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Vladan Devedžić
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Foreword

The first time I paid attention to the term “ontology” was in the late 1980s 
when I was part of an engineering team that was responsible for defining 
what we would now call a domain-specific modeling language. In our 
case, the domain was telecommunications software and the purpose of our 
language was to give system architects the ability to describe the high-
level structure of their software in the most direct and most expressive 
manner possible.

The team members were all experienced designers with deep knowledge 
of the domain so that we had no trouble putting together the initial list of 
key language concepts. We knew that we needed to include standard archi-
tectural modeling constructs such as components, ports, connectors, and 
the like. We also wanted our language to be object-oriented, so notions 
such as class, objects, and inheritance were added to the list. However, 
soon after this very promising start, all progress ground to a halt. Some-
how, the definition of the seemingly trivial fine-grain details of these con-
structs kept eluding us despite long, passionate, and occasionally acrimo-
nious discussions that can only be compared to medieval theological 
debates.

It was our good fortune that at that point we met Professor Doug Skuce 
of the University of Ottawa. He had a method and a tool that helped us de-
velop an explicit ontology for our domain. From that exercise we learned 
that our difficulties stemmed from the fact that, although we shared a gen-
eral intuition for the chosen constructs of our language, there were numer-
ous subtle and unstated differences in our individual conceptualizations 
that were a barrier to mutual understanding. Furthermore, we discovered 
that certain commonly used terms had multiple meanings – all equally 
valid – but which we had not differentiated adequately, leading to much 
confusion. Only after we had defined our ontology, which included semi-
formal definitions of all key terms and their relationships, were we able to 
finish our task successfully.  

Ever since I’ve felt that defining a formal domain ontology is a useful 
and often necessary step in almost any software project. This is because 
software deals principally with ideas rather than physical artifacts. 
Whereas the nature of physical artifacts is generally self-evident, this is not 
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the case with conceptual entities, which are products of the mind. As we 
all know, different minds see the same thing differently. 

The definition and application of ontologies for developing software 
systems is a central theme of this book. However, the book is about much 
more than that. It explains, in a clear and didactic manner, how a variety of 
recent buzzword developments in software theory and practice (intelligent 
agents, Model Driven Architecture, metamodeling, etc.) can be combined, 
and brings us to the threshold of the next step in the evolution of the World 
Wide Web: the Semantic Web. Like the Internet before it, the Semantic 
Web promises to introduce a significant and qualitatively new phenome-
non into our lives. This is because it endows the network of disparate in-
formation that is currently accessible on the Internet with meaning. Be-
cause this meaning can be gleaned and processed automatically by 
software, the Semantic Web opens up the exciting and awe-inducing pos-
sibility of a unified global intelligence accessible to all. 

In the first half of the book, the authors navigate deftly through the pro-
lific and highly confusing gemüscht of technologies, tools, and standards 
such as XML, RDF, OWL, MDA, or UML and explain how they relate to 
each other in the context of the idea of the Semantic Web. They introduce 
the notion of modeling spaces, which provides a conceptually simple yet 
comprehensive framework for understanding and addressing issues within 
the domain considered. Using that framework, the second half of the book 
describes a practical strategy for realizing key elements of the Semantic 
Web based on existing industry standards. 

The book is equally suited to those who merely want to be informed of 
the relevant technological landscape, to practitioners dealing with concrete 
problems, and to researchers seeking pointers to potentially fruitful areas 
of research. The writing is technical yet clear and accessible, and is illus-
trated throughout with useful and easily digestible examples.  

I would also highly recommend this book to sociologists studying the 
interplay between society and technology. It clearly demonstrates that the 
core technologies required for constructing the Semantic Web are available 
and moving forward inexorably. Society must be prepared to deal with 
something so ripe with potential. We must understand not only how the 
Semantic Web can be useful but also what dangers lurk within it. 

Ottawa, Canada      Bran Selic 

December 2005 



Preface

The idea of ontologies emerged in applied artificial intelligence some time 
ago as a means for sharing knowledge [Gruber, 1993]. Following the 
development of ontologies and related Web technologies (e.g., HTML and 
XML), Tim Berners-Lee, Jim Hendler, and Ora Lassila envisioned the next 
generation of the Web, called the Semantic Web [Berners-Lee et al., 
2001]. Being based on ontologies, the Semantic Web has the potential for 
semantically richer representations of things (e.g., Web pages, 
applications, and persons) and their relations on the Web, and thus should 
provide us with more intelligent services. That idea might have initially 
sounded very futuristic and too enthusiastic, but it has recruited a lot of 
important players from both academia and industry into very extensive and 
well-funded research efforts. Today, we have quite impressive results, 
manifested by standards that have been adopted (RDF and OWL), 
development frameworks (Jena), best-practice and deployment 
recommendations, and many applications (e.g. PiggyBank).  

Of course, researchers are still facing many challenges in their efforts to 
accomplish the full vision of the Semantic Web. Probably the first and 
most important goal is to persuade many industrial developers and 
software engineers to use and develop ontologies in their everyday 
practice. However, ontologies rely on well-defined and semantically 
powerful concepts in artificial intelligence such as description logics, 
reasoning, and rule-based systems. Since software engineers are largely 
unfamiliar with these concepts, ontologies have a price that must be paid 
for the benefits that they provide. 

Trying to address the above problems, researchers have started 
exploring the potential of some widely adopted software engineering tools 
and methodologies for ontology development. Stephen Cranefield did the 
pioneering research by proposing that UML, a well-known software 
modeling language, should be used for ontology development [Cranefield, 
2001a]. After him, several researchers have explored further the 
similarities, differences, and equivalences between UML and ontology 
languages, as well as the potential of the most recent software engineering 
initiative called the Model Driven Architecture (MDA), and its 
accompanying standards (the Meta-Object Facility (MOF) and XML 
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Metadata Interchange (XMI)) for ontology development [Baclawski et al., 
2002a; Djuri  et al., 2005a; Falkovych et al., 2003]. This resulted in the 
initiation of a process for adopting an MDA-based ontology standard by 
the Object Management Group (OMG), a software engineering 
standardization consortium [OMG ODM RFP, 2003]. The standard is 
intended to define the Ontology Definition Metamodel (ODM) using the 
MOF (used for specifying UML as well), a UML extension (the Ontology 
UML Profile, or OUP) to allow UML tools to be used to fully develop 
ontologies, and a set of transformations between the ODM, the OUP, 
UML, and Semantic Web ontology languages (e.g., RDF(S) and OWL). 
When completed, the ODM specification is expected to be in the form of 
an OMG language, like UML and CWM. 

In this book we try to fill the gap in the literature covering the subject of 
applications of the MDA for ontology development on the Semantic Web. 
Other books cover either the MDA initiative [Kleppe et al., 2003; Mellor 
et al., 2003b] or the Semantic Web (i.e., ontology development) [Fensel, 
2004; Stuckenschmidt & van Harmelen, 2005; Zhong et al., 2003] only. 
This book gives a comprehensive overview of both themes, with the main 
emphasis on how we can employ MDA-related standards to develop 
Semantic Web ontologies. The book is closely related to the recent OMG 
initiative for the ODM. The book is the first description of that new 
language.

The book is based on our experience obtained from a series of tutorials 
entitled “MDA Standards for Ontology Development” that we have given 
at several international conferences on the Semantic Web (the International 
Semantic Web Conference and the European Semantic Web Conference) 
and on software engineering (the International UML Conference and the 
International Conference of Web Engineering). 

Organization and Structure 

The book is divided into three parts. Part I covers the basics of both the 
main topics – ontologies and the MDA. First, Chap. 1 gives a brief 
overview of the field of knowledge representation in artificial intelligence. 
Chapters 2 and 3 introduce the main concepts of ontologies, the Semantic 
Web, standards, applications, tools, and some open research questions. 
Next, Chap. 4 explains the Model Driven Architecture, and its main 
standards (the MOF and XMI) and mechanisms (UML profiles). Part I is 
concluded by Chap. 5 with modeling spaces, a conceptual framework 
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defined to provide an easier understanding of approaches to modeling such 
as ontologies and MOF-defined modeling languages (UML and the ODM). 

Part II is the central part of the book. It starts with Chap. 6, which 
presents a comprehensive review of several approaches and tools that aim 
to bridge the gap between ontology development and software engineering 
methodologies. This chapter also lists the relations between UML and 
ontology languages. Chapter 7 explains the motivation for the forthcoming 
OMG ontology development standard for the ODM, and the requirements 
the standard has to fulfill. Next, Chaps. 8 and 9 describe the current 
specifications of the OMD and the Ontology UML Profile, respectively. 
Finally, Chap. 10 analyzes the mappings between MDA-based languages 
(the ODM and the OUP) and Semantic Web ontology languages. 

Part III is dedicated to applications that will support the practical use of 
languages that conform to the OMG ontology development standard, and 
to some practical aspects of how to develop ontologies using those MDA-
based languages. First, Chap. 11 is a short tutorial showing how to develop 
ontologies using the OUP in two state-of-the-art UML tools (MagicDraw 
and Poseidon for UML). Chapter 12 describes an implementation of an 
ontology-building platform called AIR, developed entirely following 
MDA principles. Finally, Chap. 13 discusses two examples of ontologies 
developed using the OUP and MDA standards. 

Throughout the book, we use many ontologies, UML and other MDA-
based models, and transformations between them. In order to allow you to 
try them out and use them in practice, we have created a Web page 
containing supplementary resources. You can reach this Web page at 
http://www.modelingspaces.org. Besides the resources referred to in the 
book, this Web page contains the slide handouts of the tutorials that we 
have given at many international conferences.   
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1. Knowledge Representation 

Knowledge is understanding of a subject area [Durkin, 1994]. It includes 
concepts and facts about that subject area, as well as relations among them 
and mechanisms for how to combine them to solve problems in that area. 

The branch of computer science that studies, among other things, the 
nature of human knowledge, understanding, and mental skills is artificial 
intelligence (AI). The goal of AI is to develop computer programs to do 
the things that humans usually call “intelligent”. 

There are dozens of definitions of AI in the literature, none of them 
being complete and all-encompassing. The reason for such incompleteness 
is the complexity of the phenomenon of intelligence. Still, the study of 
human knowledge and its representation in computers is so very central in 
AI that even some definitions of the discipline recognize that fact. For 
example: 

AI is the branch of computer science that attempts to approximate the 
results of human reasoning by organizing and manipulating factual and 
heuristic knowledge. [Bandwidth Market, 2005]  

Artificial intelligence. The range of technologies that allow computer 
systems to perform complex functions mirroring the workings of the 
human mind. Gathering and structuring knowledge, problem solving, 
and processing a natural language are activities possible by an 
artificially intelligent system. [e-Learning Guru, 2005]  

It is said that AI aims at making programs that represent, encode, and 
process knowledge about problems – facts, rules, and structures – rather 
than the data of problems. 

The objective of this chapter is to survey some of the most important 
concepts and principles of knowledge representation. The chapter takes a 
pragmatic approach – rather than providing a comprehensive study of all 
aspects of knowledge representation, it only covers those that lay the 
foundations for understanding the rest of the book. 
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1.1 Basic Concepts 

In AI, knowledge storing is the process of putting knowledge, encoded in a 
suitable format, into computer memory. Knowledge retrieval is the inverse 
process – finding knowledge when it is needed. Reasoning means using 
knowledge and problem-solving strategies by means of an intelligent 
program to obtain conclusions, inferences, and explanations. An important 
prerequisite for these processes is knowledge acquisition – gathering, 
organizing, and structuring knowledge about a topic, a domain, or a 
problem area, in order to prepare it for putting into the system. 

AI studies the above processes starting from observations of the human 
mind’s intelligent activities. For example, a person who has never had an 
experience with handheld computers may happen to take one in his/her 
hand. The person may examine it for a while, learn how to “play” with it, 
and memorize the experience, as well as the handheld’s features. 
Memorizing (knowledge storing) involves abstraction and modeling. The 
person's mind will somehow store all the essential features of the handheld 
computer, and will be able to retrieve that knowledge later when he/she 
takes the handheld computer to work with it again. Moreover, if he/she has 
had experience with desktop or laptop computers before, he/she will 
probably get along with the handheld more easily by reasoning about its 
possible features. 

Unlike the human mind, computers do not have such a transparent 
mechanism for acquiring and representing knowledge internally, just by 
themselves [Arnold & Bowie, 1985]. They rely on humans to put the 
knowledge into their memories. It is then the task of humans to decide on 
how to represent knowledge inside computers. 

So far, AI has come up with a number of different representations, or 
models of various types of human knowledge (see Sect. 1.3). Each one is 
associated with a method to structure and encode knowledge in an 
intelligent system, and a specific related data structure (such as a table, a 
tree, or a link). None of them is perfect or the best. Each representation and 
each data structure has some deficiencies that make it inadequate for 
representing all kinds of knowledge. Moreover, careful selection of a 
knowledge representation may simplify problem solving, whereas an 
unfortunate selection may lead to difficulties or even failure to find a 
solution. Complex problems require a combination of several different 
representations. 

The above paragraphs raise the question: What is the theory behind 
knowledge representation? An incomplete and vague, but good 
approximate answer is: cognitive science. Cognitive science is the 
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interdisciplinary study of mind and intelligence, embracing philosophy, 
psychology, artificial intelligence, neuroscience, linguistics, and 
anthropology [Stanford Encyclopedia of Philosophy, 2005]. One of the key 
issues in cognitive science is the study of human thinking in terms of 
representational structures in the mind, and computational procedures that 
operate on those structures [Hofstadter, 1994]. An important hypothesis is 
that the human mind has mental representations analogous to computer 
data structures. Moreover, cognitive science assumes that the 
computational procedures of the mind are similar to computational 
algorithms. There are a number of approaches in this field of study, and 
there is no consensus about the nature of the representations and 
computations that constitute thinking.  

Different mental representations of the human mind, as proposed by 
cognitive theorists – such as logical propositions, rules, concepts, images, 
and analogies – constitute the basis of different knowledge representation 
techniques (e.g., rules, frames, and logic; see Sect. 1.4). Each technique 
has advantages and disadvantages for capturing particular types of human 
knowledge. This is so because each representation technique emphasizes 
certain information about a topic or a problem, while ignoring other 
information [Hofstadter, 1994]. 

A special category of techniques is used to represent inexact and 
uncertain knowledge about the world. Human expressions such as “That's 
probably true” imply a certain degree of belief in a fact or event that is 
being talked about. In other words, much human knowledge is not 
absolutely certain; on the contrary, it is often inexact, imprecise, and 
incomplete. The techniques used to represent such knowledge are typically 
based on probability theory, the theory of evidence, and fuzzy-logic 
theory. 

In order to be practical, every knowledge representation technique needs 
a notation. A formal notation often used for representing knowledge is 
first-order predicate calculus. Of course, it is not suitable for all types of 
knowledge. The notation of description logics has also proven expressive 
enough to represent knowledge formally. More recently, the trend has been 
to use XML syntax for representing knowledge structures. 

Starting from various notations, AI researchers have developed a 
number of knowledge representation languages to support various 
representation techniques. Being artificial languages, knowledge 
representation languages usually have precisely defined grammars to help 
the parsing of expressions in these languages and ease the machine 
processing of the knowledge represented. However, ease of parsing 
sometimes comes at the expense of human readability. 
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Note that knowledge representation and intelligent reasoning are always 
intertwined, both in the human mind and in AI [Minsky, 1985; Russell & 
Norvig, 2002]. The mind uses mental representations of the world and 
mental procedures such as deduction, search, matching, rotation, and 
retrieval to make inferences about the world. Likewise, AI reasoners use 
encoded knowledge and inference procedures to solve problems.  

This intertwining makes it possible to answer the fundamental question: 
What is knowledge representation? Davis et al. [Davis et al., 1993] answer 
this question by discussing five different roles of a knowledge 
representation.  

The first role of a knowledge representation is to serve as a surrogate,
i.e., a substitute for things from the real world inside an intelligent entity. 
Typically, things from the real world are external to the reasoner, whereas 
the corresponding representations are internal to it. Internal representations 
enable reasoning to substitute for direct interaction with the world. 
Operations on representations substitute for operations on real-world 
things. Being surrogates and only approximations/models of reality, all 
knowledge representations are inevitably imperfect in terms of 
completeness, which may lead to incorrect reasoning. 

The second role of a knowledge representation is making a set of
ontological commitments about the real world. By expressing only a part 
of the information about the world and ignoring the rest, knowledge 
representation also makes a kind of selection: it determines what the 
intelligent system can “see” in the world, and to what it remains “blind”. In 
fact, it is the knowledge representation that brings in focus the aspects of 
the world that are believed to be relevant. For example, a representation of 
human hand may include details of its anatomy, but omit completely any 
knowledge of its function. This representation may be encoded in various 
languages and using various notations; however, the essential part is not 
the form but the content. 

This is not to say that the form is irrelevant to ontological commitment. 
On the contrary, the very selection of the representation used to encode a 
piece of knowledge implies commitments and constraints. Rules, logic, 
frames, etc. all embody a point of view about the kinds of things that are 
important in the world, i.e., commitments about what to see in it. Rules 
imply inference logic about object–attribute–value triplets, whereas frames 
bring objects and their interactions into view. 

The third role of a representation is as a fragmentary theory of 
intelligent reasoning. Every representation indicates at least a partial belief 
about how people reason intelligently and what it means to reason 
intelligently. Furthermore, there is a set of conclusions that an intelligent 
system is permitted to draw for each particular representation; this set is 
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usually very large and insufficiently constrained for practical purposes. On 
the other hand, there is also an indication of which inferences are 
appropriate to draw for each representation, i.e. the intelligent inferences. 
Finally, every representation typically incorporates only a part of the 
complex phenomenon of intelligent reasoning.  

The fourth role of a knowledge representation is as a medium for 
efficient computation. That is to say, to use a representation a machine 
must compute with it, which makes computational efficiency a central 
issue in the notion of representation. To this end, it should be noted that 
every representation, by its nature, provides some guidance about how to 
organize knowledge in order for computation with it to be most efficient. 
For example, frames are suitable for taxonomic reasoning. Hence 
organizing them into taxonomic hierarchies increases the reasoning 
efficiency. Other representations may suggest different organizations of 
knowledge.

A knowledge representation is also a medium for human expression,
which is its fifth role. Recall that, in the course of knowledge acquisition, 
humans (knowledge engineers) gather, organize, and store knowledge in 
the knowledge base of an intelligent system. To do so, humans have to 
create and communicate representations to machines and to each other. In 
that process, questions such as the following arise: How general is the 
representation used? How precise is it? How expressive? How suitable is it 
as a language for communication? How easy is it for humans to think or 
“talk” in that language? What kinds of things are easy to express in that 
language? And so on. 

1.2 Cognitive Science 

In brief, cognitive science studies the nature of the mind. More precisely, it 
studies cognition – mental states and processes such as thinking, 
reasoning, remembering, language understanding and generation, visual 
and auditory perception, learning, consciousness, and emotions, [Clark, 
2001]. In addition to the theoretical goal of understanding human thinking, 
cognitive science can have the practical goal of improving it, which 
requires normative reflection on what we want thinking to be [Stanford 
Encyclopedia of Philosophy, 2005]. 

Historically, cognitive science and AI have developed in parallel. In the 
mid 1950s, experimental psychology was dominated by behaviorism, a 
view that psychology should restrict itself to examining the relation 
between observable stimuli and observable behavioral responses. Internal 
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mental states and processes were completely neglected by behaviorists, 
which was a view that virtually denied the existence of the mind. 
Cognitive science appeared as a reaction to that position – its view was 
that mental states and processes actually mediate between input stimuli 
and output responses. It was suggested that information in the mind is 
encoded in chunks, mental representations that require mental procedures 
for encoding and decoding the information. From the very beginning, the 
mind–computer analogy became dominant in cognitive science:  

The mind is to the brain as software is to hardware. Mental states and 
processes are like computer programs implemented in brain states and 
processes. [Rapaport, 2000]. 

The interdisciplinary nature of cognitive science is best reflected in its 
diverse research methodology. For cognitive psychologists, the primary 
method is experimentation with human participants. People (usually 
undergraduate students) are brought to the laboratory to study their mental 
processes (e.g., the mistakes they typically make in deductive reasoning, 
their performance when solving problems using analogies, the way they 
form and apply concepts, and so on) under controlled conditions. Another 
set of methods has been developed by researchers interested in 
computational models that simulate aspects of human performance: these 
researchers form and test models intended to be analogous to mental 
operations. The third kind of contribution to the rich methodology of 
cognitive science originated from linguists. Linguists are interested in 
identifying grammatical principles that provide the basic structure of 
human languages. They start from noticing subtle differences between 
grammatically correct and incorrect phrases. Neuroscientists' research is 
based on observing what is happening in various parts of the brain while 
people are doing various mental tasks. In their experiments with nonhuman 
subjects, neuroscientists can insert electrodes and record the firing of 
individual neurons. With humans, the methods are noninvasive and include 
various kinds of magnetic and positron-based scanning devices to observe 
what is happening in different parts of the brain while people are doing 
mental tasks such as mental imagery and word interpretation. Cognitive 
anthropologists examine human thinking to consider how thought works in 
different cultural settings [Stanford Encyclopedia of Philosophy, 2005]. 

It should be stressed that the philosophy of the mind is also important to 
cognitive science, although it does not have a distinct method. Philosophy 
shares its theoretical work with that in other fields, and is also concerned 
with empirical results. It deals with questions such as the nature of 
representation and computation, the relation between mind and body, and 
the nature of explanations. 
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The best work in cognitive science comes from combining methods 
from different disciplines. For example, cognitive psychology and AI can 
be combined through computational models of how people behave in 
experiments. 

The best way to grasp the complexity of human thinking is to use 
multiple methods, especially psychological and neurological 
experiments and computational models. Theoretically, the most fertile 
approach has been to understand the mind in terms of representation 
and computation. [Stanford Encyclopedia of Philosophy, 2005] 

Two of the most widely used computational paradigms for describing 
mental representations and the processes of the mind in cognitive science 
are the symbolic and connectionist paradigms. In the symbolic paradigm, 
the mind exists as a physically implemented “symbol system”, i.e., an 
implementation of an effectively computable procedure (a universal 
machine). An important hypothesis here is that a physical system is 
capable of intelligent behavior if and only if it is a physical symbol system. 
In other words, intelligent systems can manipulate symbols through a 
variety of mental states and procedures, and vice versa, physical symbol 
systems are capable of being intelligent systems. 

The connectionist paradigm is inspired by physical neurons and their 
connections in the human brain. Physical neurons are modeled as specific 
interconnected data structures and processors – artificial neurons – and 
there are corresponding algorithms that model the firing of neurons and the 
spreading of activation in an artificial neural network. The aim is to 
propagate information along the links between the (large number of) 
neurons from the input to the output. The network can be trained to exhibit 
a desired intelligent behavior on the output, which is equivalent to the 
learning capability of the human brain. Technically, the learning of an 
artificial neural network is achieved by adjusting the weights associated 
with the links between the neurons. The point here is that intelligence is 
achieved without symbolic computation; it emerges over time, through the 
training procedure. 

Combinations of the two major paradigms have also been explored, in 
two ways. One way is based on the fact that some cognitive processes are 
easy to implement symbolically (e.g., problem solving, reasoning, and 
game playing), whereas some others are more easily implemented using 
the connectionist approach (e.g., some aspects of visual perception and 
learning). The other way views connectionism as a lower level of cognitive 
processing, i.e. as a way of implementing symbolic processes [Rapaport, 
2000]. For example, logical reasoning may be explained in terms of 



10      1.  Knowledge Representation 

“connectivity patterns” that correspond precisely to symbolic 
representations. 

All these paradigms suggest that there is no single computational model 
of the mind. It is actually the mind–brain–computation triad that requires 
further exploration, where each member of the triad may be used to 
suggest new ideas about the others. Most of today’s computers are 
sequential processors, whereas the brain performs parallel processing of 
many operations at once. 

Currently, there are six widely established cognitive theories about the 
nature of the representations and computations that can be used to explain 
how the mind works [Stanford Encyclopedia of Philosophy, 2005]: formal 
logic, rules, concepts, analogies, images, and neural connections. 

Formal logic. This theory hypothesizes that people make the inferences 
they do because they have mental representations similar to sentences in 
propositional and predicate logic, as well as deductive and inductive 
procedures that operate on those sentences. Many complex kinds of 
knowledge and many inferences can be understood in terms of applying 
deductive and inductive procedures to the sentences. For example, the 
rule of logic called modus ponens states that if A is true and “A implies 
B” is also known to be true, then B is true. Another example is the 
resolution principle of gathering specific information/evidence in order 
to determine the truth of an assertion or to prove some previously 
established goal. The assertion “P is true” holds if it can be shown that 
“ P is true” cannot hold because it leads to a contradiction with the 
evidence. John Sowa [Sowa, 2000] generalizes the power of logic 
explicitly: 

Everything that can be stated clearly and precisely in any natural 
language can be expressed in logic. There may be aspects of love, 
poetry, and jokes that are too elusive to state clearly. But anything that 
can be implemented on a digital computer in any programming 
language can be specified in logic. [Sowa, 2000] 

Rules. Much of human knowledge is naturally described in terms of 
rules of the form “IF … THEN …”. Moreover, much of human thinking 
and reasoning can be modeled by rule-based systems, because people 
have mental rules, and procedures for using those rules to search a space 
of possible solutions. They also have procedures for generating new 
rules. Applying these kinds of procedures produces intelligent behavior. 
Concepts. In cognitive science, concepts are viewed as sets of typical 
features (slots). Concepts correspond partially to the words in spoken 
and written language. Schemas and scripts are more complex than 
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concepts that correspond to words, but are also sets of features. 
Concepts usually belong to various kind-of and part-of hierarchies. 
Applying concepts in intelligent processing means obtaining an 
approximate match between concepts and things in the world, and using 
inheritance through kind-of hierarchies to infer about more general 
concepts.
Analogies. People have verbal and visual representations of situations 
that can be used as cases or analogue in new situations. They also have 
retrieval, mapping, and adaptation processes that operate on those 
analogue and produce intelligent behavior. Computational models of 
analogical reasoning simulate how people retrieve, map, and apply 
source analogue to target situations. 
Images. People have visual images of objects, spaces, and situations, 
and are capable of processing and manipulating those images. An image 
is worth a thousand words, asthe ancient Chinese said – images are 
often much more suitable in representations than lengthy verbal/textual 
descriptions. Computational image processing that supports human 
pictorial representations includes procedures such as scanning, rotation, 
focusing, zooming, and transformation.  
Neural connections. Some mental representations involve simple 
processing units of brain – neurons – linked to each other by excitatory 
and inhibitory connections. Some human neurophysiological processes 
spread activation between these units via their connections; some others 
modify the connections. Applying these processes produces various 
kinds of intelligent behavior, such as vision, decision making, 
explanation selection, and meaning making in language comprehension. 
The central and appealing hypothesis of cognitive science, that the mind 

works by means of representations and computations, has been criticized 
as well. The critics complain that cognitive science neglects the 
importance of emotions, consciousness, and the physical environment in 
human thinking, as well as some social aspects of thought and the 
contribution of the body to thought and action. Some critics also doubt that 
the mind can be effectively described as a computational system in the 
standard sense, and suggest describing it as a dynamic system or system of 
quantum physics instead. 

1.3 Types of Human Knowledge 

Cognitive psychologists have identified a number of different types of 
knowledge that humans commonly use, and practical AI systems 
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implement some of these types using corresponding knowledge 
representation techniques. The existence of multiple types of knowledge in 
human minds indicates the capability of humans to organize their 
knowledge in a structured way and to use that knowledge to solve 
problems efficiently. 

Table 1-1 summarizes the categories and types of knowledge that most 
humans typically use; nowadays, AI systems implement many of these 
types.

Procedural knowledge is about how to do something, for example how a 
problem is solved. Some typical types of knowledge in this category are 
rules, problem-solving strategies, agendas and procedures. 
Declarative knowledge describes what is known about a topic or about a 
problem. For example, some statements of declarative knowledge may 
describe details of concepts and objects. Some other statements may 
express facts that are either true or false. 

Table 1-1. Commonly used types of human knowledge (adapted from [Durkin, 
1994]) 

Category Explanation/type 
Procedural knowledge Rules

Strategies
Agendas
Procedures

Declarative knowledge Concepts 
Objects
Facts 

Metaknowledge Knowledge about other types of knowledge  
and how to use them 

Heuristic knowledge Rules of thumb 
Structural knowledge Rule sets 

Concept relationships 
Concept-to-object relationships 

Inexact and uncertain 
knowledge

Probabilities
Uncertain facts, rules, relationships, and evidence 
Fuzzy sets and logic 

Commonsense knowledge Default propositions 
Approximate concepts and theories 
General hierarchies and analogies 

Ontological knowledge Concepts 
Relationships between concepts 
Axioms
Constraints
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Metaknowledge is knowledge about knowledge. It is used to decide 
what other knowledge is best suited for solving the problem at hand, 
what other knowledge is irrelevant to the problem and should therefore 
not be considered at all, and how to direct the problem-solving process 
into the most promising areas of the solution space. 
Heuristic knowledge includes those rules of thumb that guide the 
problem-solving process on the basis of previous experience in solving 
problems, individual intuition and skills, and a good understanding of 
the problem. However, heuristic knowledge is not strict. Also, problem 
solving based on heuristic knowledge is not guaranteed to be successful 
(i.e., it is not guarranteed to find a solution to the problem). Heuristic 
knowledge is usually compiled empirically from fundamental, deep 
knowledge about the problem, and is expressed as simple heuristics that 
help guide the processes of solving the problem and moving through the 
solution space. 
Structural knowledge describes mental models and the organization of 
problems, solutions, and their respective spaces. Typically, relationships 
between different pieces of knowledge from other categories (such as 
kind-of, part-of, grouping, and sets) are described by structural 
knowledge.
Inexact and uncertain knowledge characterizes problems, topics, and 
situations in which information is inherently imprecise, unavailable, 
incomplete, random, or ambiguous. Inexact information and knowledge 
is often described in terms of a priori, a posteriori, and conditional 
probabilities of events. Uncertain knowledge is associated with 
expressions about a subjective belief in the validity of the knowledge, as 
well as with fuzzy linguistic terms (such as little, warm, or high) rather 
than precise quantitative measures, and degrees of membership of sets 
ranging between 0 and 1 rather than strict true or false membership. 
Commonsense knowledge is the term used to denote a vast amount of 
human knowledge about the world which cannot be put easily in the 
form of precise theories [McCarthy, 1999]. In many situations, humans 
rely on this kind of knowledge when facing an imprecise or incomplete 
characterization of the problem they are trying to solve, or when they 
simply lack more appropriate knowledge. It is always difficult to know 
in advance what part of commonsense knowledge will become relevant 
in solving a problem. Also, the consequences of applying that 
knowledge cannot be fully determined. Applying commonsense 
knowledge requires using defaults, approximate concepts (concepts 
without clear definitions) and approximate theories (theories involving 
approximate concepts), as well as general hierarchies and analogies. 
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Ontological knowledge is an essential supplement to knowledge about a 
specific domain – it describes the categories of things in that domain 
and the terms that people use to talk about them [Sowa, 2000]. For 
example, the ontological knowledge about an object-oriented language 
contains the concept of a class, and the ontological knowledge about a 
relational database includes tables and fields. Ontological knowledge 
also describes relations between such categories, and the axioms and 
constraints in the domain. Obviously, the types of ontological 
knowledge overlap with the types of the other categories of knowledge 
(declarative and structural knowledge). The important difference, 
however, is in the meanings of the various categories. 

1.4 Knowledge Representation Techniques 

There is no single “best” theory that explains all human knowledge 
organization. There is no single “best” technique for structuring data in all 
computer programs either. Likewise, there is no single ideal knowledge 
representation technique suitable for all applications. When building 
practical intelligent systems, developers should select the best knowledge 
representation technique to suit the application. To do this, they must have 
a good understanding of the various types of human knowledge and a 
palette of knowledge representation techniques to select from. 

Note that the correspondence between the types of human knowledge 
discussed in the previous section and knowledge representation techniques 
is not necessarily one-to-one. Some techniques can be used to represent 
knowledge in two or more of the categories and types listed in Table 1-1. 
For example, rules of various forms, used as a knowledge representation 
technique, can represent parts of procedural knowledge, heuristic 
knowledge, metaknowledge, and inexact/uncertain knowledge. Likewise, 
facts, used as a declarative knowledge type, can be represented using 
several techniques – propositions, object–attribute–value triplets, multiple-
valued facts, uncertain facts, etc. 

The traditional AI techniques most frequently used to represent 
knowledge in practical intelligent systems include object–attribute–value 
triplets, uncertain facts, fuzzy facts, rules, semantic networks, and frames. 
Most of them are also important for understanding the rest of this book, 
and hence they are briefly surveyed in this section. More recently, 
ontologies have acquired major importance in knowledge representation as 
well. They are covered in detail from Chap. 2 onwards. 
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Simpler knowledge representation techniques can be used within more 
complex ones. For example, various techniques for representing facts can 
be used to describe parts of rules, frames, and semantic networks. 

1.4.1  Object–Attribute–Value Triplets 

Object–attribute–value (O–A–V) triplets) are a technique used to represent 
facts about objects and their attributes. More precisely, an O–A–V triplet 
asserts an attribute value of an object. For example, the English phrase 
“The color of the ball is yellow” can be written in O–A–V form as “Ball–
color–yellow” and represented graphically as in Fig. 1-1. 

color 
yellow Ball 

Fig. 1-1. An example of O–A–V triplet 

Objects usually have more than one attribute, so in a graphical 
representation there may be multiple arrows (denoting attributes) and 
boxes (denoting attribute values) for each oval (representing an object). 
Some attributes may be single-valued as in the above example, whereas 
others may be multiple-valued (e.g., “Travel–purpose–business, 
pleasure”).

1.4.2  Uncertain Facts 

A simple but frequently used extension of O–A–V triplets allows 
uncertainty of facts to be described. A certainty factor is a numeric value 
assigned to a statement that represents the degree of belief in the statement 
[Durkin, 1994]. Such numeric values are usually discrete and are taken 
from a previously specified interval (e.g., [0, 1], [–1, 1], [0–100], and the 
like). Discrete values usually have linguistic counterparts. For example, 
the certainty of a statement can be described using the following terms and 
their equivalent certainty factors: “definitely false” (–1.0), “probably false” 
(–0.5), “unknown” (0.0), “probably true” (0.5), and “definitely true”. The 
statement “The river is probably long” can be written as an uncertain O–
A–V fact “River–length–long (CF = 0.5)”, and its graphical representation 
may look as in Fig. 1-2. 
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length 
long River 

CF 
0.5 

Fig. 1-2. An uncertain fact 

The continuous interval of possible certainty factor values can be 
divided into continuous subintervals and each subinterval can be assigned 
a discrete value. More fine-grained subintervals, mean more variety in 
certainty factor values and more possibilities for expressing uncertainty 
precisely. 

1.4.3  Fuzzy Facts 

Fuzzy facts represent uncertainty using the imprecise and ambiguous terms 
commonly found in natural languages. For example, the statement “The 
person is old” may be interpreted differently by different people, who may 
have different understandings of the term “old”. The fuzzy set representing 
old people may look as in Fig. 1-3 and is defined by a corresponding 
membership function. This function can be used to calculate the actual 
numerical value of a membership in the fuzzy set, on a scale from 0 to 1. 

0.5

Age 

Young Middle-aged 

40 50 90 5

Membership 
value 

Old 

Age [year] 

1

0

Fig. 1-3. Fuzzy sets on age 
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1.4.4  Rules 

A rule is a knowledge representation technique and a structure that relates 
one or more premises (conditions, or antecedents), or a situation, to one or 
more conclusions (consequents), or actions. The premises are contained in 
the IF part of the rule, and the conclusions are contained in the THEN part, 
so that the conclusions may be inferred from the premises when the 
premises are true. For example: 

IF  The time is after midnight 
AND  I am hungry 
THEN I should not eat now 

Premises are typically represented as facts, for example using O–A–V 
triplets. Actions can assert a new fact or can perform an operation (e.g., 
invoke a procedure). 

Another interpretation of rules, premises, and conclusions is obtained 
from the state–transition view. There is a collection of states – situations 
that might occur in the application environment. A rule describes the logic 
of moving from a start state (a set of valid premises) to a goal state 
(described by the rule’s conclusions). 

Uncertain rules may include certainty factors, both in the premises and 
in the conclusions, and imply uncertain inferences. For example: 

IF  The time is after midnight (CF = 0.5) 
AND  I am hungry 
THEN I should not eat now (CF = –0.5) 

In uncertain rules, omitting an explicit value for a certainty factor in a 
premise means “take the previously inferred CF value” or “take the default 
CF value”. Conclusions made with uncertain premises cannot be 
absolutely true, but absolutely certain premises may lead to an uncertain 
conclusion.

Fuzzy rules contain fuzzy sets in their IF and THEN parts. They actually 
map fuzzy sets to one another: 

IF    The meal is hot
THEN  I should wait a little before I eat it. 

The knowledge of a practical intelligent system may be represented 
using a number of rules. In such a case, the rules are usually grouped into a 
hierarchy of rule sets, each set containing rules related to the same topic. 
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1.4.5  Semantic networks 

Semantic networks (or concept maps) are a knowledge representation 
technique that attempts to reflect cognition [Barr & Feigenbaum, 1981; 
Rapaport, 2000]. Designed after the psychological model of the human 
associative memory, semantic networks are graphs made up of objects, 
concepts, and situations in some specific domain of knowledge (the nodes 
in the graph), connected by some type of relationship (the links/arcs). 
Figure 1-4 shows an example. The network represented expresses several 
inter-related facts: Billy is a Labrador, which is a kind of a dog. The other 
kinds of dogs shown are setters and bulldogs. A dog has legs, and the 
number of legs is 4. 

Dog

is a 

4

Labrador Billy Bulldog Setter

a kind of 

number of 

a kind of 

has

a kind of 

Leg 

Fig. 1-4. A simple semantic network 

Note that arcs can be labeled to denote an arbitrary relationship between 
concepts. However, kind-of, part-of, and is-a relationships are the most 
common. The graphical notation used to represent semantic networks is 
not standardized, but the things that can be typically represented in such 
networks are concepts (classes), their instances (objects), attributes of 
concepts, relationships between classes and objects, and values of 
attributes. As in object-oriented programming, objects/instances should 
normally have values for all attributes defined in the concept. There may 
be default values for some attributes (e.g., dogs normally have 4 legs). 
Kind-of relationships denote inheritance. Also, parts of semantic networks 
are easily recognized as O–A–V triplets (e.g., “Leg–number of–4”). 

It is easy to insert new nodes, relationships, and values into a semantic 
network. The technique has proven to be intuitively clear and easy to learn, 
and is widely used by AI specialists and psychologists alike. However, 
semantic networks are known to be weak in representing and handling 
exceptions to the knowledge they represent. In large networks, all nodes 
must be carefully examined for exceptions. 
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1.4.6  Frames 

A frame is a technique and a data structure for representing stereotypical 
knowledge of some concept or object. Frames are similar to classes and 
objects in object-oriented programming. There are class frames, which 
represent common features of a set of similar objects (e.g., dog, student, or 
movie). Instance frames represent specific instances of a class frame (e.g., 
instances of the above three class frames may be the instance frames Billy, 
Joan, and The Legends of The Fall, respectively). 

Each frame is easy to visualize as a form with various fields to be filled. 
The fields correspond to slots (or properties) of the frame. A typical slot of 
a frame is its name. Instance frames also typically have a corresponding 
class slot. The other slots depend on the nature of the frame itself. 

Instance frames inherit all slots of the corresponding class frame. 
However, an instance frame may change the values of some slots or even 
add new slots (and their values). There can be many instance frames 
corresponding to one class frame. 

In fact, frames are tightly related to semantic networks. An important 
difference between the two techniques is that, unlike semantic networks, 
frames include procedural knowledge as well, in the form of facets. Facets 
are typically attached to slots and contain procedures (methods, or 
demons) that are invoked automatically when the value of the slot is 
changed, or when it is needed (read). For example, an if-changed method 
may be invoked for each slot for which it is necessary to check the 
numeric value that is to be written into the slot. Likewise, an if-needed
method may be called to supply the slot’s value from a database or from a 
spreadsheet.

Another knowledge representation technique related to frames is that of 
scripts, which describe activities involving the corresponding knowledge, 
and also supply possible outcomes and scenarios. 

1.5 Knowledge Representation Languages 

The central component of any knowledge-based intelligent system is its 
knowledge base. The knowledge base contains a set of sentences – the 
units of the knowledge represented using one or more knowledge 
representation techniques, i.e., assertions about the world [Russell & 
Norvig, 2002]. The sentences are expressed in a knowledge representation 
language.

New sentences can be added to the knowledge base, in order for the 
information and solutions provided by the system to be both accurate and 
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complete. Queries can be made to the knowledge base to obtain what the 
system currently knows about the world. Functions that implement these 
actions must rely on the details of the knowledge representation language. 

Knowledge representation languages should be capable of both syntactic 
and semantic representation of entities, events, actions, processes, and 
time. However, not all of the existing knowledge representation languages 
have support for all of these things. Also, each existing language supports 
some, but not all, popular knowledge representation techniques. In 
addition, some knowledge representation languages are designed to 
provide support for knowledge communication and interchange between 
intelligent systems. 

The dividing line between knowledge representation languages and 
programming languages is not strict. One may argue that traditional AI 
programming languages such as Lisp and Prolog support knowledge 
representation as well. Unlike popular programming languages such as C 
and Java, AI languages provide some built-in mechanisms for deriving 
facts from other facts, which is important for representing knowledge (as 
opposed to representing data). Others may argue that it is necessary for a 
knowledge representation language to have explicit support (in terms of 
data structures and language constructs) for knowledge representation 
techniques such as rules, frames, scripts, and semantic networks. 

Ideally, a successful knowledge representation language should both be 
expressive enough to let the knowledge base developer structure and 
encode all the necessary knowledge easily, and make the represented 
knowledge understandable by humans. The language and the knowledge 
represented in it should cause a system using that knowledge to behave as
if it knows it. 

The subsections that follow briefly overview important design 
paradigms for knowledge representation languages, deliberately leaving 
out ontology representation languages, which are covered in the later 
chapters.

1.5.1  Logic-Based Representation Languages 

Much knowledge representation can be done in a logic-based language (or 
“logic language” for simplicity). Moreover, many of the other frequently 
used knowledge representation paradigms are built on top of formal logics. 
Note the plural here – there are actually many formal logics. They partially 
overlap, but are also different in terms of how much they can express and 
in terms of notational and other details. 



1.5  Knowledge Representation Languages      21 

Both historically and pragmatically, logic-based languages are an 
important branch of AI. 

Rationale, Pros and Cons 

The popularity of formal logics as the basis for knowledge representation 
languages arises for practical reasons. They are all formally well founded 
and are suitable for machine implementation. Also, every formal logic has 
a clearly defined syntax that determines how sentences are built in the 
language, a semantics that determines the meanings of sentences, and an 
inference procedure that determines the sentences that can be derived from 
other sentences. Furthermore, most logic languages are designed to be 
precise and to avoid the incomplete and ambiguous expressions frequently 
found in natural languages. Even fuzzy logic has this property, in spite of 
the fact that it is suitable for representing ambiguity arising from linguistic 
terms. 

On the other hand, all sentences in logics are assertions. Reasoning 
based on formal logics is limited to deriving truth values and proofs for 
such assertions. In formal logics, it is difficult to model interrogations and 
those kinds of human reasoning that involve assumption, likelihood, belief, 
disbelief, doubt, desires, etc. Also, designing a complete valid inference 
procedure is a very complex task for many logics.  

Nevertheless, precise and formally clearly expressed assertions are a 
good starting point. It may be the case that the syntax and semantics of a 
logic are quite suitable for a certain application, and that only the 
reasoning needs to be specifically designed for that particular application. 
Some may complain that designing and developing a reasoner is not an 
easy task, but the alternatives (e.g., frame-based and rule-based languages) 
have proven not to be perfect either. Moreover, since logic-based roots can 
often be traced in many other formalisms, the shortcomings of logic cannot 
be eliminated easily. Using something completely different instead, such 
as neural networks, may only reverse the problem – things that are very 
easy to do with logic languages can be very hard to do with another 
formalism. 

Note, however, that agreement to use a logic language does not solve 
other knowledge base development problems automatically. For example, 
setting up the vocabulary for building the sentences in the knowledge base 
can be a time-consuming task. 
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Propositional Logic 

A proposition is a logical statement that is either true or false. For 
example, “The princess is in the palace.” An O–A–V triplet is a more 
complex form of proposition, since it has three distinct parts. 

Propositional logic is a form of symbolic reasoning. It assigns a 
symbolic variable to a proposition, for example 

A = The princess is in the palace 

The truth value (true or false) of the variable represents the truth of the 
corresponding statement (the proposition). Propositions can be linked by 
logical operators (AND ( ), OR ( ), NOT ( ), IMPLIES (  or ), and 
EQUIVALENCE ( )) to form more complex statements and rules: 

IF  The princess is in the palace   (A) 
AND  The king is in the garden   (B) 
THEN The king cannot see the princess  (C) 

The symbolic representation of the above rule in propositional logic is 

A  B   C 

Thus, propositional logic allows formal and symbolic reasoning with 
rules, by deriving truth values of propositions using logical operators and 
variables. Finding the truth value of an arbitrary statement is a matter of 
examining the truth values of the variables and the truth tables of the 
logical operators in component parts of the statement. In fact, this 
procedure means checking the statement’s validity or satisfiability – the 
proof theory of propositional logic. Deduction systems based on 
propositional logic are syntax-based (i.e., the actual meaning of the 
symbols is unimportant in the reasoning process; what matters is the 
formal proof). A deduction system for propositional logic is called a 
propositional calculus. 

However, this simple form of reasoning may be inadequate or too 
mechanistic. In many situations, it is difficult to assign a variable to a 
whole statement. Also, the truth value of a statement can often be 
subjective and prone to interpretation, and is generally computationally 
exponential. First-order logic offers a more fine-grained approach, in 
which parts of statements can be represented and reasoned about logically 
[Durkin, 1994; Russell & Norvig, 2002; Sowa, 2000]. 
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First-Order Logic (First-Order Predicate Calculus) 

First-order logic extends propositional logic by introducing the universal
quantifier, , and the existential quantifier,  (see below for details). It 
also uses symbols to represent knowledge and logical operators to 
construct statements. Its symbols may represent constants, variables, 
predicates, and functions.  

Constants are symbols that begin with a lowercase letter. Variables are 
symbols that begin with an uppercase letter. Propositions are represented 
using arguments – objects of propositions – and predicates – assertions 
about objects. For example, the proposition “The princess is in the palace” 
would be written in first-order logic as 

in(princess, palace) 

The predicate in can be used with variables to write more general 
propositions that capture various special cases (instantiations): 

in(X, Y) 

The above statement can be instantiated by propositions such as “The 
princess is in the palace” and “The king is in the garden”: 

in(princess, palace) 
in(king, garden) 

A function is a mapping from entities of a set to a unique element of 
another set: 

father(princess) = king 

Using predicates, functions, and logical operators, it is possible to specify 
rules:

in(princess, palace)  in(king, garden)  see(king, princess) 

The universal quantifier  and the existential quantifier , in first-order 
logic, denote the range or scope of variables in statements. The 
combination “ x” is interpreted as “for each x” or “for all x”. “ x” means 
“there exists an x such that”. For example, 

X see(X, princess)  “Someone sees the princess” 
X see (X, princess)  “Everyone sees the princess” 

The range of quantifiers in first-order logic is restricted to simple, 
unanalyzable individuals, hence the name “first-order”. In higher-order
logic, function variables and predicate variables can be governed by 
quantifiers [Sowa, 2000]. 
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Knowledge represented with first-order logic is written in the form of 
predicates and rules. Reasoning with first-order logic is performed using 
predicates, rules, and general rules of inference (such as modus ponens and 
resolution) to derive conclusions. 

First-order logic is simple – it is two-valued logic with just two 
quantifiers and the basic Boolean operators. However, used as a 
knowledge representation language, it forms a sound basis upon which 
many other AI languages are built (e.g., Prolog). It is like an assembly 
language for knowledge representation [Durkin, 1994]. Higher-order logic, 
modal logic, fuzzy logic, and even neural networks can all be defined in 
first-order logic. In other words, it can be used as a metalanguage for 
defining other kinds of logic, and even more: 

First-order logic has enough expressive power to define all of 
mathematics, every digital computer that has ever been built, and the 
semantics of every version of logic including itself. [Sowa, 2000] 

Knowledge Interchange Format (KIF) 

KIF is a particular logic language based on first-order logic, specifically 
designed to make it useful as a mediator in the translation of other 
languages – an “interlingua” [Genesereth & Fikes, 1992]. The idea is to 
have translators from other languages to KIF and to other languages from 
KIF. If it is necessary to perform a translation from a representation 
described in a language A to an equivalent representation in another 
language B, it requires only A-to-KIF and KIF-to-B translators; KIF is 
used as an intermediate language. 

The description of KIF includes specifications of both its syntax and its 
semantics. The semantics is similar to that of first-order logic. KIF uses the 
prefix notation of first-order logic with extensions to support 
nonmonotonic reasoning and definitions. The following simple examples 
illustrate the syntax of KIF: 

(forall ((?x P)) (Q ?x))  ;"All P are B" 
(exist ((?x P)) (not (Q ?x))  ;"Some P is not Q" 
(president 802 thomas jefferson) ; a record in the database  

;of presidents 
(president 345 abraham lincoln) ; another record in the database of  

     ; presidents 

Another important extension of KIF with respect to first-order logic is 
the use of the backquote (`) and comma (,) operators, which enable the 
encoding of knowledge about knowledge. For example, 
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(notes mary `(president  ,?x  ,?y  ,?z)) 

The above sentence represents the knowledge that Mary notes the 
sentences about presidents. The backquote operator is applied to the inner 
sentence, which is a knowledge statement itself; the entire inner statement 
is used as an argument in the outer statement. The question marks denote 
variables, but the comma operator applied to the variables ?x, ?y, and ?z 
specifies that they should not be taken literally. In other words, the 
commas specify that Mary notes instances of the sentence (president  ?x  
?y  ?z), not the sentence itself. 

KIF can be also used to describe functions, sets, and many other 
concepts.

Conceptual Graphs [Sowa, 2000] provide a suitable graphical notation 
for logic. They are based on existential graphs, augmented with features 
from linguistics and semantic networks. As a graphical notation, they are 
of interest for KIF because they have expressive power identical to that of 
KIF, and anything stated in one can be automatically translated to the 
other.

Description Logics 

An entire group of languages for knowledge representation, based on 
description logics, is of particular interest in the context of ontology 
representation and development (Chap. 2 and onwards). The semantics of 
the underlying concepts of these languages identifies them as decidable 
fragments of first-order logic. 

Developing a knowledge base using a description logic language means 
setting up a terminology (the vocabulary of the application domain) in a 
part of the knowledge base called the TBox, and assertions about named 
individuals (using the vocabulary from the TBox) in a part of the 
knowledge base called the ABox. The vocabulary consists of concepts and 
roles. Concepts denote sets of individuals. Roles are binary relationships 
between individuals. There are atomic concepts and roles (names of 
concepts and roles) and complex concepts and roles (terms for concepts 
and roles). The complex concepts are built using descriptions expressed in 
the corresponding description logic language and are assigned names in 
the TBox. For example, if Person and Female are atomic concepts and 
hasChild is an atomic role (a relation), part of a TBox defining complex 
concepts about family relationships may look like this (adapted from 
[Baader et al., 2003]): 

Woman   Person   Female 
Man   Person Woman
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Mother   Woman  hasChild.Person 
Father   Man  hasChild.Person 
Parent   Mother   Father 
Grandmother    Mother  hasChild.Parent 
MotherWithManyChildren    Mother 3 hasChild 
MotherWithoutDaughter   Mother  hasChild. Woman
Wife   Woman  hasHusband.Man 
Husband   Man  hasWife.Woman 

In the above concept definitions, each symbol of the form R.C or R.C
denotes the set of those individuals from the set corresponding to the 
concept C for which the relation (role) R holds. The symbols  and 
denote intersection and union, respectively. 3 hasChild is a value 
restriction on the cardinality of the corresponding set (in this case, the 
minimum; the set includes all those instances of the atomic role hasChild 
in the domain of interpretation for which the value restriction holds). 

In fact, the TBox defines (in a general way) semantic relationships 
between individuals introduced in the ABox and their properties. In other 
words, the ABox describes a specific state of affairs in the world in terms 
of the concepts and roles defined in the TBox. An ABox corresponding to 
the above TBox might be 

MotherWithoutDauther(JANE)
hasChild(JANE, CHARLES) 
Father(ABRAHAM) 
hasChild(ABRAHAM, ISAAC) 

An intelligent system with a knowledge base structured as a TBox–
ABox pair can reason about its terminology and assertions. It can 
determine whether a description in the TBox is satisfiable (i.e., 
noncontradictory), and whether there is a subsumption relationship 
between two descriptions (i.e., one is more general than the other). For 
example, in the above TBox Person subsumes Woman, and both Parent
and Woman subsume Mother. Two important reasoning tasks about 
assertions in the ABox are to determine whether the assertions imply that a 
particular individual is an instance of a given concept description, and 
whether a set of assertions is consistent (whether it has a model). From a 
pragmatic point of view, consistency checks of sets of assertions and 
satisfiability checks of concept descriptions help to determine whether a 
knowledge base is meaningful at all. Subsumption tests help to organize 
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the terminology into a meaningful hierarchy of concepts according to their 
generality. Each test can be also interpreted as a query about objects of 
interest; it retrieves the set of individuals that satisfies the test. 

A subclass of description logic languages allows rules to be used in 
addition to the TBox and ABox to describe knowledge. The rules are of 
the operational form C  D (“if an individual is an instance of C, then 
derive that it is also an instance of D”), or of the declarative form KC  D
(the inclusion axiom form; the operator K restricts the application of the 
axiom to those individuals that appear in the ABox and for which the 
ABox and TBox imply that they are instances of C). Such rules can be 
used to add assertions to the ABox in an operational environment (an 
intelligent system) containing a knowledge base. These rules can be 
interpreted logically. Alternatively, the environment may provide an 
application program interface (API) with appropriate functions through 
which programs can operate on the knowledge base in terms of adding, 
retracting, and modifying concepts, roles, and assertions. 

1.5.2  Frame-Based Representation Languages 

In all frame-based representation languages (or, for simplicity, “frame 
representation languages”), the central tenet is a notation based on the 
specification of frames (concepts and classes), their instances (objects and 
individuals), their properties, and their relationships to each other [Welty, 
1996]. This object-orientedness is human-centered. For this reason, frame-
based languages are favored by many over logic languages as more 
appealing and more effective from a practical viewpoint [Baader et al., 
2003]. 

In addition to object-orientedness, frame-based languages also provide 
for expressing generalization/specialization, i.e., organizing concepts into 
hierarchies. They also enable reasoning, by making it possible to state in a 
formal way that the existence of some piece of knowledge implies the 
existence of some other, previously unknown piece of knowledge. With 
frame-based languages, it is possible to make classifications – concepts are 
defined in an abstract way and objects can be tested to see whether they fit 
such abstract descriptions. 

To get a feeling for the nature and syntax of frame-based languages, 
consider following piece of code, in the KM language [Clark & Porter, 
2004]: 

(every Buy has 
 (buyer ((a Agent))) 
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 (object ((a Thing))) 
 (seller ((a Agent)))) 

The above code partially defines the class Buy, saying something like 
“All buy events have a buyer and a seller (both of type Agent), and an 
object (of type Thing) which is bought.” In fact, it defines only the 
properties of the instances of the class, and not the properties of the class 
itself (things such as the parent class(es), the words or phrases used to 
denote objects of the class, and so forth). The latter may be defined as 
follows:

(Buy has 
 (superclasses (Transaction)) 
 (terms (“buy” “purchase”))) 

In KM, both of the above code snippets are referred to as frames. A KM 
class typically needs two frames to describe it, one for the properties of the 
class, and another for the properties of the members of the class. 

The traditional frame-based languages lacked precise characterization of 
their semantics. Moreover, discrimination between different types of 
knowledge embedded in a frame system was not clear. As a result, every 
frame-based system behaved differently from the others (which were 
developed using different frame-based languages), in many cases despite 
virtually identical-looking components and even identical relationship 
names [Baader et al., 2003]. As a consequence, different systems could not 
interoperate and share knowledge. Later frame languages introduced more 
formal semantics, retaining the hierarchical concept structures and ease of 
representation and simultaneously improving the efficiency of reasoning 
and the representational rigor. For example, the KL-ONE system of 
Brachman and Schmoltze [Brachman & Schmoltze, 1985] introduced 
description logic formalism into representing frames. KL-ONE not only 
greatly improved the representational rigor of frame-based languages, but 
also spawned an entire new class of frame systems. CLASSIC [Brachman 
et al., 1991] was one of them. The following example is the CLASSIC 
encoding of two concepts (JAPANESE-CAR-MAKE and RICH-KID) and 
one role (thing-driven):

define-concept[JAPANESE-CAR-MAKER,  
  (ONE-OF Mazda Toyota Honda)]; 
define-role[thing-driven]; 
define-concept[RICH-KID, 
  (AND STUDENT 
   (ALL thing-driven SPORTS-CAR) 
   (AT-LEAST  2 thing-driven))] 
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The first two definitions in the above example have obvious meanings. 
In the third one, the ALL construct is used to describe any object that is 
related by the thing-driven role solely to individuals that can be described 
by the concept SPORTS-CAR (“something all of whose thing-driven are 
SPORTS-CARs”). The third definition also uses the AND construct to make 
the composition of the three concept expressions that follow it. So, RICH-
KID is defined to be “a STUDENT who drives AT-LEAST 2 things, ALL of 
which are SPORTS-CARs”. The correspondence between CLASSIC 
constructs and operators and constructs from the underlying description 
logics is easy to notice (e.g., AND corresponds to , ALL to , and (ALL
thing-driven SPORTS-CAR) to  thing-driven.SPORTS-CAR). 

Note, however, that most frame languages are just a new syntax for 
parts of first-order logic [Welty, 1996]. This means that most of these 
languages do not offer anything new in expressiveness. For instance, the 
KM code shown in the example about buys, buyers, and sellers can be 
represented equivalently in KIF as 

(forall (?b) 

 (exists (?a) (=> (isa ?b Buy) (and (buyer ?b ?a) (isa ?a Agent))))) 
(forall (?b) 
 (exists (?a) (=> (isa ?b Buy) (and (object ?b ?a) (isa ?a Thing))))) 
(forall (?b) 
 (exists (?a) (=> (isa ?b Buy) (and (seller ?b ?a) (isa ?a Agent)))))

Frame-based languages are usually suitable for representing knowledge 
that does not change. Only very few of them are able to deal with 
nonmonotonic changes in the knowledge being represented. 

Another disadvantage of frame-based languages is inadequate way in 
which they deal with procedural knowledge. The way they do this is 
usually to use some limited arithmetic, plus calling procedures and 
functions written in a procedural language and attached to slot facets. The 
procedural knowledge encoded in this other language is not represented in 
a frame-based way – it is hard-coded in the corresponding 
function/procedure. As a consequence, the resulting systems can only 
reason with that knowledge, but not about it. 

1.5.3  Rule-Based Representation Languages 

Rule-based representation languages (or, simply, “rule languages”) are 
popular in commercial AI applications, such as expert systems [Durkin, 
1994]. The rule-based paradigm is easy to understand, and there are a 
number of practical tools for building rule-based systems. Every rule-
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based language has an appropriate syntax for representing the If–Then 
structure of rules. On the other hand, there are considerable syntactic 
differences between different languages in terms of how they actually 
represent If–Then rules. 

Vianu [Vianu, 1997] notes that there are two broad categories of rule-
based languages: declarative (model-theoretic) languages, which attempt 
to provide declarative semantics for programs, and production system
languages, which provide procedural semantics based on forward chaining 
of rules. The criteria for other possible classifications of rule-based 
languages may be related to what is allowed in the rules. Some languages 
allow only the assertion of new facts in the knowledge base in the Then 
part of the rules. Other languages allow facts to be retracted from the 
knowledge base as an effect of rule firing. Yet another group of languages 
allows the embedding and/or invocation of procedural code (written in 
another, procedural language) in the rule syntax. Rule languages also differ 
in terms of to what extent they control rule ordering during the inference 
process. Further classifications of rule languages are possible. 

However, systems built using traditional rule languages have been 
shown to have two important limitations [Welty, 1996]: 

they are quite restrictive when applied to large problems (i.e., when the 
rule base is large), as there is no ordering of the rules; 
inferences cannot be limited to those dealing only with the objects of 
interest.

More recent rule languages combine rules with frame-based features 
that provide object orientation, better structuring of knowledge through 
generalization/specialization and concept hierarchies, and natural inference 
capabilities such as classification and inheritance. The synergy between 
rule-based languages and frame-based languages brings about an important 
advantage: information about a specific concept can be stored together 
with that concept, as opposed to rule-based systems where information 
about one concept may be scattered throughout the rule base. For example, 
a set of rules can be stored with a frame slot and activated through an if-
needed demon whenever the slot value is read. Alternatively, a set of rules 
may be written to reason about a certain concept (frame) in detail. 

As an example of a language that combines rules and frames, consider 
the following code, written in the native language of Jess, a popular 
expert-system development tool [Friedman-Hill, 2003]: 

(deftemplate person (slot age)) 
...
(defrule check-age 
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 (person (age ?x)) 
 (test (> ?x 30)) 
=>
 (printout t ?x “is over 30!” crlf)) 

This example defines a frame (person) using the deftemplate construct, 
and a rule (check-age) using the defrule construct. The rule checks to see if 
an instance of the person frame has a value of the age slot greater than 30; 
if so, an appropriate print action is taken. 

The rule-based representation formalism is recognized as an important 
topic not only in AI, but also in many other branches of computing. This is 
especially true for Web engineering. Rules are one of the core design 
issues for future Web development, and are considered central to the task 
of document generation from a central XML repository. Much of the 
interoperability between different applications in e-commerce also relies 
on rules and needs a Web interchange format. Rules can be also used for 
declarative specification of Web services. 

In response to such practical demands from the world of the Web, the 
Rule Markup Initiative has taken steps towards defining RuleML, a shared 
Rule Markup Language [RuleML, 2005]. RuleML enables the encoding of 
various kinds of rules in XML for deduction, rewriting, and further 
inferential–transformational tasks. The Rule Markup Initiative’s approach 
to rule categorization is more detailed, more fine-grained, and more 
practically oriented than the categorization by Vianu described above 
[RuleML, 2005]. The rule categories currently considered by the Rule 
Markup Initiative include [Wagner et al., 2003] 

production rules – the If–Then rules commonly found in numerous AI 
systems, such as expert systems; 
integrity rules (or integrity constraints) – assertions that must hold in all 
evolving states of a discrete dynamic system; 
reaction rules – rules that observe triggering events, check conditions in 
the forward direction in a natural fashion, perform an action only when 
and if all the necessary events/conditions are observed/met, and may 
also include an optional postcondition (in other words, rules specifying 
the reactive behavior of a system in response to triggering events); 
derivation rules – rules with one or more conditions and a conclusion, 
which imply using a procedure to derive the conclusion from the 
condition(s) (e.g., rules for defining derived concepts); 
transformation rules – transformation constructs that consist of a 
transformation invoker, a condition, and a transformation return (e.g., 
conditional directed equations or term-rewriting rules). 
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An example rule in English may state that “if someone likes music, then 
John likes that guy”. Represented in RuleML, as an adaptation of a similar 
example from [Boley et al., 2001], this rule may look like this: 

<rulebase label="likesMusic"> 
 <imp> 
  <_head><atom> 
   <rel>likes</rel> 
   <ind>John</ind> 
   <var>x</var> 
  </atom></_head> 
  <_body><atom> 
   <rel>likes</rel> 
   <var>x</var> 
   <ind>music</ind> 
  </atom></_body> 
 </imp> 
</rulebase>

Without going into details of RuleML tagging, we recall that such an 
XML-based representation can be translated into another XML-based 
format using an appropriate XSL transformation (XSLT). For example, the 
above RuleML rule can be translated into an equivalent Jess rule using the 
RuleML-to-Jess XSLT: 

(defrule likesMusic 
 (likes ?x music) 
=>
 (likes John ?x)) 

The Rule Markup Initiative now covers a number of new developments, 
including Java-based rule engines, an RDF-only version of RuleML, and 
MOF-RuleML (an abstract syntax of RuleML considered as a MOF 
model). See Chaps. 3 and 4 for a detailed explanation and discussion of 
RDF (Resource Description Framework) and MOF (Meta Object Facility). 

1.5.4  Visual Languages for Knowledge Representation 

The use of visual languages for knowledge representations is compelling 
for many reasons [Kremer, 1998]. The most obvious one is that the domain 
may require representation in a way that is not possible with purely textual 
or symbolic languages. Even if another formal knowledge representation 
language is available and suitable, in preliminary knowledge acquisition 
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the appropriate formal structure for that language may not be apparent. 
Domain experts may have difficulties in communicating and articulating 
their domain knowledge in terms of formal knowledge structures; hence 
knowledge engineers may want to use visual representations for easier 
communication with the experts and for relaxation of formal discipline. 
Also, the syntax of logic, frame, and rule languages may often be 
complicated and may require knowledge of tiny details which may be quite 
unappealing even to knowledge engineers. 

Visual languages for knowledge representation may be based on various 
kinds of graphs, forms (query by example), purely spatial relationships 
(iconic sentences), matrices (spreadsheets), and simple text layouts 
(outlining tools). Most of them facilitate knowledge representation by at 
least partially eliminating the need to use the rigorous syntax of symbolic 
or text-based languages. Under the surface, they often transform the 
represented knowledge into another language (such as first-order logic).

Note that many of the graphical user interfaces (GUIs) of knowledge 
acquisition and representation tools serve the purpose of collecting and 
transforming user input into the knowledge base. However, calling a GUI a 
visual language may provoke objections, especially in the context of visual 
languages for knowledge representation. In many cases, the GUI is there 
just to hide the details of the underlying representation language. On the 
other hand, this role of the GUI proves to be very useful in knowledge 
engineering. For example, JessGUI is a forms-based GUI that transforms a 
knowledge engineer’s input into Jess syntax, thus making it possible for 
the knowledge engineer to avoid learning the Jess language [Jovanovi  et 
al., 2004]. 

In a more narrow sense of the term, visual languages rely on two- or 
three-dimensional graphics and always involve pictures of some sort, 
typically nodes and connecting arcs [Kremer, 1998]; text is involved as 
well, but for labeling and annotation purposes. However, more 
importantly, in order for visual languages to be interpreted reliably, it is 
necessary to specify their syntax and semantics formally. As with all other 
formal languages, such a specification involves precise definition of: 

terminal and nonterminal symbols; 
productions (derivation rules), i.e., the grammar; 
unambiguous semantics. 

Specifying a visual language in this way must reflect its primary intent – 
to render knowledge into a form amenable to computational support, i.e., 
to straightforward, unambiguous interpretation by a computer program. 
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Myers [Myers, 1990] has provided a comprehensive taxonomy of all 
visual languages, including those for knowledge representation. It includes 
several categories of visual languages for knowledge representation and 
shows that all of them can be subsumed by the general notion of concept
maps, i.e., semantic networks. For example, visual languages such as Petri 
nets and flowcharts can also be interpreted as concept maps. The common 
feature of all categories of visual languages for knowledge representation 
is that they may be described in terms of relational grammars. As a 
consequence, all visual languages for knowledge representation used in 
practice fall into the category of concept maps, or have concept map 
languages which implement them. 

All concept map languages provide graphical elements, used to 
represent typed nodes and typed arcs, as well as their labels. Other visual 
indicators may be used to distinguish between the nodes and arcs of 
different types (e.g., different shapes, colors, and line types). In fact, 
concept maps implement a simple graph theory. Frequently used 
extensions include the implementation of partitions or contexts, usually in 
the form of a box drawn around a subgraph. 

Like frames, concept maps are object-oriented, human-centered, and 
easy to comprehend and use. The way they enable the structuring of a 
body of knowledge is much more salient than other forms of knowledge 
representation, such as pure text and logic [Kremer, 1998]. They can be 
used both at an informal level, such as for “brainstorming”, and at a very 
formal level, such as for representing knowledge in the knowledge base of 
an intelligent system. 

Well-known examples of visual languages for knowledge representation 
include KRS [Gaines, 1991], which is the visual counterpart of the 
CLASSIC frame language, and Conceptual Graphs [Sowa, 2000]. 
Conceptual Graphs are more elaborate, more complex, more accurate, 
more expressive, more detailed, and more fine-grained than KRS. 
Although originally intended to represent natural-language expressions in 
a graphical form, they can actually represent many more forms of 
knowledge, including first-order logic (recall from Sect. 1.5.1 that 
Conceptual Graphs actually represent a visual counterpart of logic). It is of 
particular importance that Conceptual Graphs also have their “linear 
form”, i.e., a pure text representation, evolved for ease of use by computer 
programs. For the sake of completeness, this feature of Conceptual Graphs 
should be noted here as an analogue of other graphical–text representation 
pairs, such as that in RDF, and that provided by the Unified Modeling 
Language (UML) tools that enable serialization of UML models to an 
XML representation using XML Metadata Interchange (XMI). Chapters 4 
and 5 cover these topics in detail. In fact, much of this book argues that 
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UML itself is an extremely suitable visual language for knowledge 
representation, even though it was originally developed as a software 
engineering tool. 

1.5.5  Natural Languages and Knowledge Representation 

Natural languages can express almost everything related to human 
experience, and hence they can be conceived of as knowledge 
representation languages as well. Natural languages are very expressive, 
and are also suitably declarative for knowledge representation. Moreover, 
they can be thought of as metalanguages for explaining both other natural 
and artificial languages (such as programming languages, other knowledge 
representation languages, and all other formal languages) and themselves 
[Sowa, 2000]. 

However, the use of natural languages for knowledge representation in 
AI is very restricted, owing to the fact that they are extremely complex for 
machine processing. Parsing sentences in human languages successfully is 
one of the most difficult computing problems, and still remains a 
challenge. Even more important and more difficult is the problem of 
machine understanding of the meaning of natural languages. 

On the other hand, there are several examples of research, 
experimentation, and practical developments in describing knowledge 
about natural languages using knowledge representation techniques. Such 
efforts are of high importance for ontological engineering (see Chap. 2 for 
a detailed explanation of ontological engineering). For example, DATR is 
a language designed for lexical knowledge representation, i.e. for 
representing knowledge about words taken from natural languages [Evans 
& Gazdar, 1996]. More precisely, DATR represents knowledge about 
lexemes, the fundamental units of the lexicon of a natural language; for 
instance, “bind”, “binds”, “bound”, and “binding” are forms of the English 
lexeme “bind”. In DATR, lexical knowledge is encoded in a rather 
“minimalist” semantic network of nodes, each node representing a word, a 
lexeme, or a class of lexemes. A set of attributes and their values is 
encoded with each node and represents the links. For example, the node 
describing the lexeme “bind” may be described by the following attribute–
value pairs: syntactic category – verb; syntactic type – main (i.e., it is a 
main verb, not an auxiliary one); syntactic form – present participle;
morphological form – bind-ing. In addition to such nodes and links, DATR 
has a number of constructs that are impossible to visualize in terms of 
simple inheritance hierarchies of semantic networks. Nevertheless, the 
semantics of DATR is defined in an explicit, mathematically rigorous way. 
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Another interesting approach is that of using controlled languages for 
knowledge representation [Pulman, 1996]. A controlled language is a 
restricted form of a natural language that can be systematically related to 
the underlying knowledge representation language of an intelligent system. 
The restrictions apply to both the vocabulary and the syntax of the natural 
language, and produce output that can be analyzed and processed both as a 
formal language and as a restricted natural language. The idea of using a 
controlled language for knowledge representation is that it may be easier to 
represent human knowledge in computers in two steps, rather than trying 
to encode it in a formal symbolic language directly from its natural-
language form. The first step is the transformation from a natural language 
to its appropriate controlled-language counterpart. In the second step, the 
controlled-language sentences are transformed into sentences of a more 
formal knowledge representation language (such as first-order logic, 
possibly augmented with some higher-order constructs). 

For example, the English rule “If John has 30 dollars, and he likes going 
to restaurants, then he will go out for dinner” may be represented in a 
controlled English as follows: 

CONDITION:
 P has Q dollars 
 P likes going to restaurants 
ACTION
 P will go out for dinner 

It is comparatively easy even for people without knowledge-engineering 
skills to express their knowledge in this way, and it is then rather 
straightforward to translate it to, for example, first-order logic. 

Note that controlled languages are different from canned text and 
macro-style templates such as “<person> has <number> dollars”, which 
involve replacing the variable parts with specific words at run time. Unlike 
controlled languages, templates do not support the interactive knowledge 
refinement that some types of applications may require, and are rigid, 
overly simplistic, mechanistic, and also prone to representational infidelity 
during processing.

1.6 Knowledge Engineering 

In order to develop practical knowledge bases, it is necessary to acquire 
human knowledge (from human experts or from other sources), to 
understand it properly, to transform it into a form suitable for applying 
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various knowledge representation formalisms, to encode it in the 
knowledge base using appropriate representation techniques, languages, 
and tools, to verify and validate it by running the practical intelligent 
system that relies on it, and to maintain it over time. These activities are 
parts of the process called knowledge engineering, and the people who 
perform them are knowledge engineers [Barr & Feigenbaum, 1981; 
Durkin, 1994; Friedman-Hill, 2003; Russell & Norvig, 2002]. 

It is important to understand that knowledge-engineering activities never 
occur linearly, in sequence. On the contrary, they are all interwoven and 
require rigorous discipline. It is not uncommon for knowledge engineers to 
return many times to alternative knowledge representation techniques and 
tools if they realize that those they are currently using are not suitable. 
Unfortunately, it is not always easy to tell suitable from unsuitable 
techniques and tools before the knowledge has been at least partially 
encoded, i.e., before at least one cycle of the above time-consuming 
activities has been completed. Minimizing the number of cycles depends 
on many factors, including the structure of the problem, the skills and 
experience of the knowledge engineer(s), the representation formalisms 
and tools used, and, most importantly, how successful the communication 
is between the knowledge engineer(s) and the human expert(s) in the 
process of knowledge acquisition. 

Knowledge acquisition from human experts is difficult for several 
reasons, some of which are: 

cognitive mismatch between the expert and the knowledge engineer – 
they often perceive, present, explain, and prioritize things differently; 
knowledge transformation problems – there are always difficulties in 
representing the knowledge that the expert has supplied with the 
available tools and techniques, no matter how proven and/or 
sophisticated they are; 
consistency maintenance – in order to maintain high quality and 
consistency in the knowledge represented, it is necessary to update the 
knowledge base whenever changes in the domain occur or new 
knowledge is revealed. 

There is a whole range of techniques that knowledge engineers use in 
the acquisition of knowledge from human experts [Mitchell, 1998]. Direct 
techniques either rely on the expert's ability to articulate his/her knowledge 
directly, or collect the expert’s behavior. In both cases, there is a more or 
less straightforward way to represent the acquired knowledge using some 
well-known knowledge representation technique(s). The direct methods 
include interviews, questionnaires, observation of task performance, 
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protocol analysis (asking the expert to “think aloud” while performing a 
task), interruption analysis (asking the expert to work without thinking 
aloud, and interrupting him/her when the knowledge engineer can no 
longer understand what the expert is doing), drawing closed curves, and 
inferential flow analysis (with various weights assigned to the links 
between concepts and processes). The indirect techniques make various 
assumptions about how experts represent their knowledge. Results from 
psychology and cognitive science show that experts recognize old patterns 
in new problems more effectively than do nonexperts, and that they use a 
variety of knowledge structures (tables, lists, hierarchies, networks, flow 
diagrams, and many more). Examples of indirect techniques include 
various kinds of concept grouping (clustering, sorting, and constructing 
hierarchies) that the expert is asked to perform explicitly, the use of case-
based analysis, and repertory grids (where the expert is asked to evaluate 
various cases of solving a problem along a number of different 
“dimensions”, i.e., features). After collecting data using an indirect 
technique, the knowledge engineer is supposed to work on it with the 
expert and formulate the underlying knowledge explicitly using 
appropriate knowledge representation techniques. 

Over the years, efforts in the field of knowledge engineering have 
resulted in the development of various structured methodologies. The best-
known example is CommonKADS [Schreiber et al., 1994]. This advocates 
developing multiple models of the domain knowledge (such as a 
conceptual model, organizational model, application model, and task 
model) to cover various aspects of the domain knowledge and help cope 
with the complexities of building the knowledge base. Furthermore, 
CommonKADS suggests modeling four categories of knowledge – domain 
knowledge, task knowledge, inference knowledge, and strategic 
knowledge – as well as modeling with knowledge reuse in mind. The latter 
often involves building partial models that are then reused with appropriate 
refinement in each particular case. CommonKADS insists on strong 
correspondence between the knowledge models and their implementations 
– the resulting knowledge bases should clearly and explicitly reflect the 
models they rely on. 

A number of graphical software tools have been developed to support 
various activities in the process of knowledge engineering, including 
visual knowledge representation languages. Some of these are covered in 
the subsequent chapters. 
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1.7 Open Knowledge Base Connectivity (OKBC) 

Developers of intelligent systems use various techniques, languages, and 
tools to represent, manipulate, and process knowledge in the knowledge 
bases of their systems. A particular technique, language, or tool may be 
favored by a knowledge engineer for a number of reasons (e.g., suitability 
for the particular problem, ease of representation, processing efficiency, or 
previous experience with the underlying formalism(s)). If the resulting 
system is developed to operate as a stand-alone one, such preferences may 
prevail and it may not be necessary to worry about other issues. 

However, the resulting system may need to interoperate with other 
systems and applications, both intelligent and conventional. The other 
systems and applications will then typically demand services from the 
intelligent system and access to its knowledge, which implies communica-
tion between them. Owing to the potential variety of the underlying 
knowledge representation formalisms, providing communication interfaces 
and ensuring reliable interoperability may be difficult. Implementation of 
full-scale communication and interoperation may be time-consuming and 
may become quite cumbersome. Even worse, supporting all the idio-
syncrasies of the underlying knowledge representation formalisms for each 
particular application may turn out to mean an enormous multiplication of 
effort.

OKBC [Chaudhri et al., 1998] is a protocol for accessing knowledge 
bases stored in knowledge representation systems (intelligent systems 
based on knowledge representation techniques and languages described in 
Sect. 1.5), and in systems that can be viewed externally as knowledge 
representation systems (such as object-oriented database systems). It 
specifies a set of generic operations for access to knowledge bases from 
various applications. These operations serve as an interface to the 
knowledge bases. To the external applications demanding services, this 
interface layer provides some independence from the software and tools 
that implement and manipulate the knowledge base. Moreover, it enables 
the development of tools (e.g., graphical browsers, frame editors, analysis 
tools, and inference tools) that operate on many knowledge representation 
systems. It also supports knowledge base reuse and composition from 
multiple individual systems. Version changes of the underlying knowledge 
representation systems and even transitions to other knowledge 
representation systems should be transparent to the external applications 
that access knowledge bases through OKBC. 

Just like application programming interfaces for database systems (e.g., 
Java Data Base Connectivity (JDBC)), OKBC is an application 
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programming interface for knowledge representation systems. Fig. 1-5 
illustrates this idea. Each generic OKBC operation is invoked from the 
application using a method implemented in the appropriate programming 
language for the application. In turn, each knowledge representation 
system implements the protocol in its own way. Hence each knowledge 
base manipulated by the protocol is serviced directly by the underlying 
knowledge representation system. OKBC specifies its generic operations 
in a language-independent way, but also provides appropriate language 
bindings for Java, Lisp, and C to facilitate the use of generic operations 
from some of the most popular programming languages. The bindings 
establish language-specific conventions for naming, passing arguments, 
returning values, etc. 

KRS1

copy-frame 
KRS2

copy-frame 
KRSn

copy-frame 
. . .

copy-frame

. . .

Generic 
operation 

Method 
dispatch 

Method 
implementations 

Fig. 1-5. OKBC as an application programming interface 

Note that OKBC is a knowledge communication protocol, not a 
knowledge representation language. In fact, OKBC complements 
knowledge representation languages in that it specifies generic operations 
to access and manipulate knowledge, whereas representation languages 
describe the knowledge declaratively. The OKBC operations are those 
typically supported by knowledge representation systems, in terms of 
reasoning and knowledge manipulation (e.g., checking slot values, 
assessing predicates for truth values, and inheritance).

Since OKBC evolved from an earlier protocol (called the Generic Frame 
Protocol) that focused only on frame representation systems, many of its 
operations reflect frame-based representation and reasoning (e.g., create-
class, create-individual, enumerate-frame-slots, get-slot-facets, and get-kb-
roots). Other operations serve the pragmatics of using the protocol (e.g., 
open-kb, and establish-connection).

The underlying OKBC Knowledge Model is object-oriented and is 
precisely specified in terms of constants, frames, slots, facets, classes, 
individuals, and knowledge bases. This implies that the knowledge 
obtained from or provided to a knowledge representation system using 
OKBC is expressed in a way specified by the OKBC operations and the 
OKBC Knowledge Model. In other words, the OKBC Knowledge Model 
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serves as an implicit interlingua that knowledge representation systems and 
external applications that use OKBC translate knowledge into and out of. 
Implementing the translation from the knowledge representation system 
side may raise some minor initial problems of ambiguity and confusion 
due to terminological inconsistencies – in practice, different systems often 
use the same term to mean different things, or use different terms to mean 
the same thing. The translation from the application side is much easier to 
implement, since the majority of applications in which one may want to 
use OKBC to communicate with knowledge bases are nowadays object-
oriented anyway, just like the OKBC Knowledge Model. 

OKBC assumes a client–server architecture for application development 
and supports standard network protocols such as TCP/IP. A client 
application may access multiple OKBC servers, which in turn can access 
multiple knowledge representation systems. Each communication with an 
OKBC server requires establishing a connection with it first, finding out 
about the available knowledge representation systems available on the 
server, and opening a specific knowledge base. All of these operations are 
directly supported by the appropriate OKBC operations. 

1.8 The Knowledge Level 

The notion of the knowledge level was introduced by Allen Newell 
[Newell, 1982] to better distinguish between different important views 
(levels of abstraction) associated with intelligent systems, their 
organization, the knowledge represented in their knowledge bases, and 
their operation. It was also used by Newell to discuss the nature of 
knowledge and the important distinction between knowledge and its 
representation. As Newell points out, there are three levels/views from the 
most concrete to the most abstract: the implementation level (originally, 
Newell called this level the logic level), the logical level (originally, the 
symbol level), and the knowledge level (epistemological level). The new 
names for the three levels and the adapted view of the levels presented 
here have been taken from [Russell & Norvig, 2002] and are more 
appropriate for the coverage in this book. 

Implementation level. This is the level of the knowledge base of an 
operational intelligent system. At this level, knowledge representation 
means all of the data structures deployed to hold the domain knowledge 
and other knowledge necessary to solve the current problem, as well as 
those deployed to hold the current problem description. When it is 
necessary to make a clear distinction between the former and the latter 
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(e.g., in expert systems), then the term working memory is used to 
denote the latter. In any case, at the implementation level, both the 
knowledge and the problem description are represented as data 
structures. Taking the process view, the implementation level consists of 
the read/write operations and various internal computations of the 
system that access and update the knowledge at that level. 
Logical level. All data structures in the knowledge base represent 
something, and hence an interpreter is needed to process them in a way 
consistent with the representation. In other words, the logical level is the 
level of knowledge representation. It includes the underlying knowledge 
representation paradigms, formalisms, techniques, and languages that 
are used to represent the system’s knowledge, implemented using the 
corresponding data structures at the implementation level, as well as the 
processes (interpretations) used by the system to reason and make 
inferences and derivations with that knowledge. At this level, the 
knowledge is encoded into sentences. 
Knowledge level. This is a distinct computer systems level, above the 
logical level, characterized by knowledge as the medium and the 
principle of rationality as the law of behavior [Newell, 1982]. It is 
tightly coupled to the notions of competence and rationality. At the 
knowledge level, an intelligent system is described in terms of what it 
knows (the content), what its goals are, and what actions it is capable of 
taking in order to pursue those goals. The system’s body of knowledge, 
described at the knowledge level, is largely unstructured, in terms of 
both capacity and structural constraints. The system is intelligent if it is 
capable of rational behavior, i.e., if it knows one that of its actions will 
lead to one of its goals, it will select and perform that action. 

As an illustration of the three different levels/views and the kinds of 
information associated with them, consider again the example of the king 
and the princess in Sect. 1.5.1. At the knowledge level, an intelligent 
system may be said to know that the king cannot see the princess from the 
garden, because she is in the palace. The system can also be said to use 
abstract procedures and functions that add new knowledge to the 
knowledge base and query the knowledge base. For example, an abstract 
procedure may add the knowledge that the prince is also in the palace; an 
abstract function enquiring who is in the palace will then return the 
princess, the prince, and possibly some other people. This knowledge and 
the abstract update/query processes assume nothing about the actual 
knowledge representation within the system. At the logical level, 
predicates such as in(princess, palace) and in(king, garden) may be the 
sentences that represent/encode the knowledge contained in the knowledge 
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body. These predicates are now processed by logical inference procedures 
to assess their truth values and derive new knowledge (facts), such as 

see(king, princess). Still, it is up to the implementation to encode the 
sentences into suitable data structures. The logical sentence in(princess, 
palace) may be encoded as the string “in(princess, palace)”. Or it may be 
an entry in a table defined by a relation in(Who, Where) and indexed by 
persons and locations. Or it may be implemented as something else. 

As another illustration, consider an OKBC operation such as copy-frame
(Fig. 1-5). At the knowledge level, an external system may be said to know 
how to use OKBC to replicate frames. At the logical level, it has to invoke 
the OKBC copy-frame operation and pass it appropriate arguments as 
required by its specification. However, the external system is not 
concerned with how the copy-frame operation is implemented by the 
knowledge representation system, nor how the frames are implemented by 
that system. 

Newell originally included computer hardware in his discussion of the 
implementation (logic) level. True, it is the hardware – the logic circuits 
and the registers – that performs all the low-level operations upon data 
structures. It is not necessary, though, for the purpose of this brief 
overview, to go to that level of detail concerning the implementation of 
knowledge representation inside a computer. However, it must be stressed 
that the way the data structures and the related interpreter procedures are 
designed and implemented is certainly very relevant for the performance 
of the system (and hardware does matter here). Nevertheless, it is 
irrelevant to the logical (symbol) level and the knowledge level. 



2. Ontologies 

The word “ontology” comes from the Greek ontos, for “being”, and logos,
for “word”. In philosophy, it refers to the subject of existence, i.e., the 
study of being as such. More precisely, it is the study of the categories of 
things that exist or may exist in some domain [Sowa, 2000]. A domain 
ontology explains the types of things in that domain. 

Informally, the ontology of a certain domain is about its terminology 
(domain vocabulary), all essential concepts in the domain, their 
classification, their taxonomy, their relations (including all important 
hierarchies and constraints), and domain axioms. More formally, to 
someone who wants to discuss topics in a domain D using a language L, an 
ontology provides a catalog of the types of things assumed to exist in D;
the types in the ontology are represented in terms of the concepts, 
relations, and predicates of L.

Both formally and informally, the ontology is an extremely important 
part of the knowledge about any domain. Moreover, the ontology is the 
fundamental part of the knowledge, and all other knowledge should rely on 
it and refer to it. 

This chapter covers ontologies from the perspectives of computing and 
knowledge representation. It takes a pragmatic approach, explaining the 
benefits of developing and applying ontologies, the tools and languages 
used for the development and implementation of ontologies, and the 
methodologies that bring discipline and rigor to the process of building 
ontologies. It also shows some examples of ontologies and briefly 
discusses some applications. 

Ontologies have become a very popular topic, not only in AI but also in 
other disciplines of computing. There are also efforts focused on 
developing ontologies in many other branches of science and technology. 
Hence ontologies are growing fast into a distinct scientific field with its 
own theories, formalisms, and approaches. For a more comprehensive 
coverage of the field, see [Staab & Studer, 2004]. 
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2.1 Basic Concepts 

In AI, the term “ontology” has largely come to mean one of two related 
things [Chandrasekaran et al., 1999]: 

a representation vocabulary, often specialized to some domain or subject 
matter;
a body of knowledge describing some particular domain, using a 
representation vocabulary. 

In both cases, there is always an associated underlying data structure 
that represents the ontology. 

A number of fields of AI and computing use ontologies: knowledge 
representation, knowledge engineering, qualitative modeling, language 
engineering, database design, information retrieval and extraction, and 
knowledge management and organization [McGuinness, 2002]. 

2.1.1  Definitions 

There are many definitions of the concept of ontology in AI and in 
computing in general. The most widely cited one is 

Ontology is a specification of a conceptualization. [Gruber, 1993] 

This definition is certainly the most concise one, and requires some 
further clarification. Conceptualization means an abstract, simplified view 
of the world. If the knowledge base of an intelligent system is to represent 
the world for some purpose, then it must be committed to some 
conceptualization, explicitly or implicitly. That is, every body of formally 
represented knowledge is based on a conceptualization. Every 
conceptualization is based on the concepts, objects, and other entities that 
are assumed to exist in an area of interest, and the relationships that exist 
among them. This also clarifies the meaning of the term “world” – in 
practice, “world” actually refers to some phenomenon in the world, or to 
some topic (or topics), or to some subject area. 

The other part of the above definition – specification – means a formal 
and declarative representation. In the data structure representing the 
ontology, the type of concepts used and the constraints on their use are 
stated declaratively, explicitly, and using a formal language. The formal 
representation implies that an ontology should be machine-readable.
However, an ontology is not “active”; it cannot be run as a program. It 
represents declaratively some knowledge to be used by programs. 
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Ontology … can be seen as the study of the organization and the 
nature of the world independently of the form of our knowledge about 
it. [Guarino, 1995] 

Guarino augments the above definition with the notion of a formal 
ontology, the theory of a priori distinctions between the entities of the 
world (physical objects, events, regions, quantities of matter, ...), as well as 
between the meta-level categories used to model the world (concepts, pro-
perties, qualities, states, roles, parts, ...). Fundamental roles are played in 
formal ontology by the theory of part–whole relations and topology (the 
theory of the connection relation). 

Ontology is a set of knowledge terms, including the vocabulary, the 
semantic interconnections, and some simple rules of inference and 
logic for some particular topic. [Hendler, 2001] 

The important parts in Hendler’s definition are the semantic
interconnections and inference and logic. The former says that an ontology 
specifies the meaning of relations between the concepts used. Also, it may 
be interpreted as a suggestion that ontologies themselves are interconn-
ected as well; for example, the ontologies of “hand” and “arm” may be 
built so as to be logically, semantically, and formally interconnected. The 
latter part means that ontologies enable some forms of reasoning. For 
example, the ontology of “musician” may include instruments and how to 
play them, as well as albums and how to record them. 

Swartout and Tate offer an informal and metaphorical but extremely 
useful definition for understanding of the essentials of an ontology: 

Ontology is the basic structure or armature around which a knowledge 
base can be built. [Swartout & Tate, 1999] 

Figure 2-1 illustrates this idea. Like an armature in concrete, an ontology 
should provide a firm and stable “knowledge skeleton” to which all other 
knowledge should stick. Another important issue here is the distinction be-
tween ontological knowledge and all other types of knowledge, illustrated 
in Table 1-1. An ontology represents the fundamental knowledge about a 
topic of interest; it is possible for much of the other knowledge about the 
same topic to grow around the ontology, referring to it, but representing a 
whole in itself. 
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Fig. 2-1. Illustration of Swartout and Tate’s definition of an ontology 

Kalfoglou stresses yet another important issue related to ontologies: 

An ontology is an explicit representation of a shared understanding of 
the important concepts in some domain of interest. [Kalfoglou, 2001] 

The word shared here indicates that an ontology captures some consensual
knowledge. It is not supposed to represent the subjective knowledge of 
some individual, but the knowledge accepted by a group or a community. 
All individual knowledge is subjective; an ontology implements an explicit 
cognitive structure that helps to present objectivity as an agreement about 
subjectivity. Hence an ontology conveys a shared understanding of a 
domain that is agreed between a number of individuals or agents. Such an 
agreement facilitates accurate and effective communication of meaning. 
This, in turn, opens up the possibility for knowledge sharing and reuse, 
which enables semantic interoperability between intelligent agents and 
applications.

2.1.2  What Do Ontologies Look Like? 

The answer to the above question depends on the level of abstraction. 
When implemented in a computer, they typically look like XML-based 
files. Alternatively, they can be represented in a computer using a logic 
language, such as KIF [Genesereth & Fikes, 1992]. Since ontologies are 
always about concepts and their relations, they can be represented 
graphically using a visual language. Graphical tools for building 
ontologies always support conversion from a graphical format to XML and 
other text-based formats (see Sect. 2.2.1). 

Humans can express ontologies as sets of declarative statements in a 
natural language. However, natural-language statements are difficult to 
process in a computer. Recall also from the definitions that representing 
ontologies in a computer requires a formal language. 

As an example of the representation of ontologies at different levels of 
abstraction, consider again the concept of a musician. For the sake of 
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simplicity, assume that the concepts used to describe the essential 
knowledge about the notion of a musician are musician, instrument, some 
products of his/her work, namely albums the musician has recorded and 
music events (e.g., concerts) in which he/she has participated, and devoted 
admirers (fans), who keep his/her fame as an artist. Also, assume that the 
variety and multitude of relations among these concepts that can be 
considered may be reduced to just a few of the most essential ones, such as 
the facts that each musician plays some instrument, that when giving 
concerts he/she plays at that concert, that the admirers come to attend such 
events, and that the musician also records music albums. We deliberately 
avoid in this simple example the numerous kind-of and part-of relations to 
other concepts associated with musicians and their work. 

These natural-language statements represent the conceptualization of the 
Musician ontology. At a high level of abstraction, this ontology can be 
informally diagrammed as the semantic network shown in Fig. 2-2. 

Musician 

Album 

Event 

plays 

plays at 

attends 

records 

Admirer 

Instrument 

Fig. 2-2. Musician ontology visualized as a semantic network 

Obviously, the representation in Fig. 2-2 suffers from many 
deficiencies. It is not a formal specification, i.e., it is not expressed in any 
formal language. It does not show any details, such as the properties of the 
concepts shown or the characteristics of the relations between them. For 
example, musicians have names, and albums have titles, durations, and 
years when they were recorded. Likewise, nothing in this semantic 
network shows explicitly that the musician is the author of an album that 
he/she records (note that recording engineers in music studios can also be 
said to record albums, but they are usually not the authors). Nevertheless, 
the semantic network in Fig. 2-2 does show some initial ideas about the 
Musician ontology. 

For more detail and for a formal graphical representation, consider the 
UML model in Fig. 2-3. This represents the same world as does the 
semantic network in Fig. 2-2, but allows the properties of all the concepts 
used to be specified unambiguously, as well as the roles of concepts in 
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their relations. Another important detail in this representation is an explicit 
specification of the cardinalities of all concepts. 

Figure 2-4 shows part of the Musician ontology in an equivalent XML-
based format. The OWL language [Smith et al., 2004] used in this 
representation is described in more detail in Chap. 3. It is not necessary to 
go into all the details of this representation, since in practice the 
representation is always generated automatically, starting from a graphical 
ontology editor (see Sect. 2.2.1). However, note that it is exactly this
representation of ontologies that is nowadays most widely used at the 
implementation level. 
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Fig. 2-3. UML model of the Musician ontology 

2.1.3 Why Ontologies? 

Ontologies provide a number of useful features for intelligent systems, as 
well as for knowledge representation in general and for the knowledge 
engineering process. This subsection summarizes the most important of 
these features, and is based on the treatments in [Chandrasekaran et al., 
1999; Gruber, 1993; Guarino, 1995; McGuinness, 2002; Schreiber et al., 
1994]. 
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<owl:Class rdf:ID="Event"/> 
<owl:Class rdf:ID="Album"/> 
<owl:Class rdf:ID="Instrument"/> 
<owl:Class rdf:ID="Musician"/> 
<owl:Class rdf:ID="Admirer"/> 
<owl:ObjectProperty rdf:ID="author"> 
 <owl:inverseOf> 
  <owl:ObjectProperty rdf:ID="opus"/> 
 </owl:inverseOf> 
 <rdfs:domain rdf:resource="#Album"/> 
 <rdfs:range rdf:resource="#Musician"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="player"> 
 <rdfs:range rdf:resource="#Musician"/> 
 <rdfs:domain rdf:resource="#Instrument"/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:ID="loudness"> 
 <rdf:type 
rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/> 
 <rdfs:domain rdf:resource="#Instrument"/> 
</owl:ObjectProperty> 
…

Fig. 2-4. The Musician ontology represented in OWL (excerpt) 

Vocabulary 

An ontology provides a vocabulary (or the names) for referring to the 
terms in a subject area. 

In real life, there is a whole spectrum of different kinds of vocabularies. 
A controlled vocabulary, such as a catalog, provides a finite list of terms 
together with an unambiguous interpretation of those terms. Every use of a 
term from a controlled vocabulary (e.g., “musician”) will denote exactly 
the same identifier (say 1). A glossary provides a list of terms and their 
meanings, but the meanings are specified in natural language and may 
often be interpreted differently by different people. Hence they are not 
unambiguous and thus are not suitable for machine processing. A 
thesaurus provides some additional semantics in the form of synonym 
relationships between terms, which drastically reduces ambiguity. 
However, thesauri do not provide explicit term hierarchies [McGuinness, 
2002]. 

Ontologies are different from such human-oriented vocabularies in that 
they provide logical statements that describe what the terms are, how they 
are related to each other, and how they can or cannot be related to each 
other. They also specify rules for combining the terms and their relations 
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to define extensions to the vocabulary. As Chandrasekaran et al. 
[Chandrasekaran et al., 1999] note carefully, it is not the vocabulary as 
such that qualifies as an ontology, but the conceptualizations that the terms 
in the vocabulary are intended to capture. An ontology specifies terms with 
unambiguous meanings, with semantics independent of reader and context. 
Translating the terms in an ontology from one language to another does 
not change the ontology conceptually. Thus an ontology provides a 
vocabulary, and a machine-processable common understanding of the 
topics that the terms denote. The meanings of the terms in an ontology can 
be communicated between users and applications. 

Taxonomy

A taxonomy (or concept hierarchy) is a hierarchical categorization or 
classification of entities within a domain. It is also a clustering of entities 
based on common ontological characteristics. The classification/clustering 
is organized according to a predetermined system. A good taxonomy 
should separate its corresponding entities into mutually exclusive, 
unambiguous groups and subgroups that, taken together, include all 
possibilities. It should also be simple, easy to remember, and easy to use. 
A good example of a taxonomy is a Web site’s taxonomy; it is the way the 
site organizes its data into categories and subcategories, sometimes 
displayed in a site map. 

Every ontology provides a taxonomy in a machine-readable and 
machine-processable form. However, an ontology is more than its 
corresponding taxonomy – it is a full specification of a domain. The 
vocabulary and the taxonomy of an ontology together provide a conceptual 
framework for discussion, analysis, or information retrieval in a domain. 
Note that simple taxonomies such as those of Web sites may not 
necessarily include complete generalization/specialization hierarchies (i.e., 
subclassing and is-a relations) for the concepts. With ontologies, the 
subclassing is strict, is formally specified, includes formal instance 
relationships, and ensures consistency in deductive uses of the ontology. 

Content Theory 

Since ontologies identify classes of objects, their relations, and concept 
hierarchies that exist in some domain, they are quintessentially content 
theories [Chandrasekaran et al., 1999]. Ontologies not only identify those 
classes, relations, and taxonomies, but also specify them in an elaborate 
way, using specific ontology representation languages (see Section 2.2.1 
and Chap. 3). Classes are specified using frame-based representation 



2.1  Basic Concepts      53 

principles, i.e., their properties, property values, and possible value 
restrictions (restrictions on what can fill a property) are specified as well. 
In some ontology representation languages, the value of one property may 
be expressed as a mathematical equation using values of other properties. 
Also, some languages allow developers to specify first-order-logic 
constraints between terms and more detailed relationships such as disjoint 
classes, disjoint coverings, inverse relationships, and part–whole 
relationships, etc. [McGuinness, 2002]. Thus ontologies represent 
knowledge in a very structured way. 

Well-structured and well-developed ontologies enable various kinds of 
consistency checking from applications (e.g., type and value checking for 
ontologies that include class properties and restrictions). They also enable 
and/or enhance interoperability between different applications. For 
example, we may want to expand the Musician ontology illustrated in Figs. 
2-2–2-4 to include the concept of a street musician, to denote a musician 
who entertains people in the street. One way to do this is to define a 
performsIn property in the Musician class and include in the ontology a 
definition stating that a street musician is a Musician whose performsIn
property has the value “Street”. This definition may be used to expand the 
term “StreetMusician” in an application that does not understand that term, 
but does understand the terms “Musician”, “performsIn”, and “Street”. If 
that application is asked by another application if a certain person is a 
street musician, it will “understand” the question and may be able to 
answer by querying a database of musicians to see if it contains an entry 
with the appropriate values of the name and performsIn fields. 

Being content theories, ontologies clarify the structure of domain 
knowledge. Developing an ontology requires an effective ontological 
analysis of the domain whose content the ontology is intended to 
represent. Ontological analysis reveals the concepts of the domain 
knowledge, their taxonomies, and the underlying organization. Without 
such analysis, no knowledge representation for the domain can be well 
founded. Through ontological analysis, the entire process of knowledge 
engineering acquires a strong flavor of modeling. The resulting knowledge 
base does not merely transfer the knowledge extracted from a human 
expert, but also models the problem domain in the form of the observed 
behavior of an intelligent agent embedded in its environment [Gaines, 
1991; Gruber, 1993; Guarino, 1995; Schreiber et al., 1994]. 

Knowledge Sharing and Reuse 

The major purpose of ontologies is not to serve as vocabularies and 
taxonomies; it is knowledge sharing and knowledge reuse by applications. 
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The point is that every ontology provides a description of the concepts and 
relationships that can exist in a domain and that can be shared and reused 
among intelligent agents and applications (recall that the description looks 
like a formal specification of a program; see Figs. 2-3 and 2-4). Moreover, 
working agents and applications should be able to communicate such 
ontological knowledge. Shared ontologies let us build specific knowledge 
bases that describe specific situations but clearly rely on the same 
underlying knowledge structure and organization. 

As Neches et al. note, there are many senses in which the work that 
went into creating a knowledge-based system can be shared and reused 
[Neches et al., 1991]; for example, 

through the inclusion of source specifications – the content of one 
module is copied into another one at design time, is then possibly 
extended and revised, and is finally compiled into a new component; 
through the runtime invocation of external modules or services – one 
module invokes another, either as a method from a class library or 
through a Web service, and the like; 
through communication between agents – the messages that intelligent 
agents send to and receive from each other can have various kinds of 
knowledge as their content; 
through the exchange of techniques – sharing and reusing not the 
content, but the approach behind it (in a manner that facilitates 
reimplementation of the content itself). 

These modes of sharing and reuse require shared understanding of the 
intended interpretations of domain terms, compatibility of the domain 
models used by different agents and applications, and compliance with the 
kinds of requests that the external modules/services are prepared to accept. 
All of it is facilitated by shared ontologies. Shared ontologies ameliorate 
the problems of heterogeneous representations in the knowledge bases of 
different systems (even those developed using the same representational 
paradigm), dialects within language families, varieties in communication 
conventions, and model mismatches at the knowledge level (often caused 
by a lack of a shared vocabulary and domain terminology). 

As an example of facilitating knowledge sharing and reuse by means of 
ontologies, suppose that someone has conducted a thorough ontological 
analysis of the topic of musicians, and has developed a much more 
elaborated Musician ontology than that shown in Figs. 2-2–2-4. This 
ontology would include domain-specific terms such as musician and 
musical event, some general terms such as profession, location, and 
attendance, and terms that describe behavior, such as playing and
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recording. An ontology captures the intrinsic conceptual structure of the 
domain [Chandrasekaran et al., 1999], and can be used as a basis for 
developing a rich domain-specific knowledge representation language for 
building knowledge bases in that domain. In the present case, the language 
would provide a syntax for encoding knowledge about musicians in terms 
of the vocabulary, concepts, and relations in the ontology. Anyone who 
wanted to build a knowledge base related to musicians could use that 
content-rich knowledge representation language and thus eliminate the 
need to perform the time-consuming knowledge analysis task again – the 
language would already have a large number of terms that embodied the 
complex content theory of the domain. In this way, the Musician ontology 
could be shared among different developers, and reused as the “armature” 
knowledge in a number of knowledge bases and applications. 

Make no mistake, though – in practice, knowledge sharing and reuse is 
still not easy, even if an ontology is readily available for a given purpose. 
To name but a few reasons, note that there are several different languages 
for representing ontologies, and knowledge base development tools may 
not support the language used to develop the ontology. There are also 
competing approaches and working groups, creating different 
technologies, traditions, and cultures. There may be several different 
ontologies that have been developed to describe the same topic or domain. 
Selecting any one of them may not satisfy all the requirements that the 
knowledge engineer must fulfill. Combining them may be anything but 
easy, because subtle differences between them may require a lot of manual 
adjustment, and the resulting ontology may still be inadequate. On top of 
all that, there is the problem of knowledge maintenance, since all parts of 
knowledge (including ontological knowledge) evolve over time. 

2.1.4  Key Application Areas 

There are many potential applications of ontologies, but Fikes [Fikes, 
1998] has offered a high-level list of key application areas: collaboration, 
interoperation, education, and modeling. 

Collaboration. Different people may have different views of the same 
problem area when working on a team project. This is particularly true for 
interdisciplinary teams, with specialists from different branches of science, 
technology, and development having different foci of interests and 
expertise. For such specialists, ontologies provide a unifying knowledge 
skeleton that can be used as a common, shared reference for further 
development and participation – these people can simply talk more easily 
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to each other when they have such a stable, consensual knowledge 
armature to rely on.  

Perhaps even more importantly, ontologies play the same role in 
collaboration between intelligent agents in terms of agent-to-agent 
communication. When an agent sends a message to another agent that it is 
communicating with, the other agent must have the same world model 
(i.e., the same ontology) in order to interpret the message correctly. 
Knowledge exchange between agents is much more feasible when the 
agents are aware of the ontologies that the other agents are using as world 
models. 

Interoperation. Ontologies enable tha integration of information from 
different and disparate sources. End users typically do not show much 
interest in how they get their information; they are much more interested in 
getting the information they need, and getting all of it. Distributed 
applications may need to access several different knowledge sources in 
order to obtain all the information available, and those different sources 
may supply information in different formats and in different levels of 
detail. However, if all the sources recognize the same ontology, data 
conversion and information integration are easier to do automatically and 
in a more natural way. 

Education. Ontologies are also a good publication medium and source 
of reference. Since they presumably always result from a wide consensus 
about the underlying structure of the domain they represent, they can 
provide reliable and objective information to those who want to learn more 
about the domain. Simultaneously, domain experts can use ontologies to 
share their understanding of the conceptualization and structure of the 
domain. 

Modeling. In modeling intelligent, knowledge-based applications, 
ontologies represent important reusable building blocks, which many 
specific applications should include as predeveloped knowledge modules. 
For example, the Musician ontology defines knowledge that can be used as 
is in both a recommender system that suggests to users what new music 
CDs they should buy, and a Web-based intelligent educational system that 
learners may use to find out more about famous instrumentalists of the 
twentieth century. 

Fikes’ classification can be seen from a more pragmatic perspective as 
well. In fact, many consider e-commerce to be the application domain for 
ontologies. Ontologies can enable machine-based communication between 
buyers and sellers, can help in customer-profiling tasks, can support 
vertical integration of markets, and can describe reuse between different 
marketplaces. In e-commerce, ontologies can be applied in terms of all of 
the four categories (roles) that Fikes suggested. 
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Another extremely demanding general application area provides very 
fertile soil for applying ontologies – search engines. Ontologies can 
support structured, comparative, and customized searches [McGuinness, 
2002]. Concepts and taxonomies from ontologies can be used to find pages 
with syntactically different but semantically similar content, 
simultaneously eliminating many irrelevant hits. For example, if a user 
searches the Web for special offers on music CDs of individual performers 
and gets too many hits, an intelligent search engine can consult an 
ontology such as the Musician ontology to obtain relevant properties that 
can help to refine the search. On the basis of the properties retrieved, the 
user may be presented with a special-purpose form to fill in, so that he/she 
can provide a detailed set of specifications for the CDs of interest (such as 
the preferred instrument, and live or studio recordings). The ontology may 
also offer refinements using its generalization/specialization relations, so, 
in the case of individual performers, the user may also be automatically 
asked to select between instrumentalists and singers, and, further on, to 
select between guitarists, pianists, and so on. While waiting for user input, 
the search engine could proactively perform a less refined search in the 
background and possibly cache information for further (more refined) 
searches. 

2.1.5  Examples 

The following brief descriptions of some existing ontologies are intended 
to show the variety of ontologies and their potential uses. Most of the 
examples have been selected by starting from ontology libraries available 
on the Web [DAML Ontology Library, 2005; OWL Ontology Library, 
2005; Protégé Ontologies Library, 2005]. 

Example 1: The Gene Ontology project 
(http://www.geneontology.org/) 

This project provides a controlled vocabulary to describe gene and gene 
product attributes for any organism. The ontology has three organizing 
principles: molecular function, biological process, and cellular component. 
A gene product has one or more molecular functions. Also, a gene product 
is used in one or more biological processes, and might be associated with 
one or more cellular components. This ontology is frequently updated and 
is available for download in various formats. 
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Example 2: The Learner Ontology 

The goal of the Learner Ontology Project (http://www.l3s.de/~dolog/ 
learnerrdfbindings/) is to research user modeling in open P2P environ-
ments, where learner profiles are distributed and, also, fragments of learner 
profiles are distributed. The ontology covers various features of learners, 
several types of security access, various levels of the learner profile, and so 
on.

Example 3: The Object-Oriented Software Design Ontology (ODOL) 

The objectives of the Web of Patterns project (http://www-
ist.massey.ac.nz/wop/) are to create an ontology to describe the design of 
object-oriented software, to represent software design patterns [Gamma et 
al., 1995] and related concepts using the concepts developed in that 
ontology, and to provide a flexible framework that can be used by the 
software engineering community to share knowledge about software 
design. The ODOL-based descriptions of patterns are OWL documents 
that can be imported by popular ontology development editors such as 
Protégé (see Sect. 2.2.1) for a more detailed description of Protégé). 

2.2 Ontological Engineering 

To develop a really useful ontology requires a lot of engineering effort, 
discipline, and rigor. Ontological engineering denotes a set of design 
principles, development processes and activities, supporting technologies, 
and systematic methodologies that facilitate ontology development and use 
throughout its life cycle – design, implementation, evaluation, validation, 
maintenance, deployment, mapping, integration, sharing, and reuse. 
Ontological engineering provides a design rationale for the development of 
knowledge bases and enables systematization of knowledge about the 
world of interest and accumulation of knowledge [Mizoguchi & Kitamura, 
2001]. 

Knowledge engineering for an intelligent system should always include 
ontological engineering, which implies using specific development tools 
and methodologies. 

2.2.1  Ontology Development Tools 

The standard tool set of an ontology engineer includes ontology repre-
sentation languages and graphical ontology development environments. 
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More recently, ontology-learning tools have also started to appear, in order 
to partially automate the development process and help in the evolution, 
updating, and maintenance of ontologies. Other tools are also required in 
the context of developing ontologies for deployment on the Semantic Web 
(see Chap. 3).

Ontology representation languages 

There are a number of ontology representation languages around. Some of 
them were developed at the beginning of the 1990s within the AI 
community. Others appeared in the late 1990s and later, resulting from the 
efforts of AI specialists and the World Wide Web Consortium (W3C). 
Roughly speaking, the early ontology representation languages belong to 
the pre-XML era, whereas the later ones are XML-based. Also, most of the 
later ones were developed to support ontology representation on the 
Semantic Web, and hence they are also called “Semantic Web languages”.
Other common names for them are “Web-based ontology languages” and 
“ontology markup languages” [Gómez-Pérez & Corcho, 2002]. 

Some of the best-known examples of the early ontology representation 
languages are: 

KIF [Genesereth & Fikes, 1992], which is based on first-order logic; 
Ontolingua [Gruber, 1992], which is built on top of KIF but includes 
frame-based representation; 
Loom [MacGregor, 1991], based on description logics. 

Among the widely used Web-based ontology languages are:  

SHOE [Luke & Heflin, 2000], built as an extension of HTML; 
XOL [Karp et al., 1999], developed by the AI center of SRI 
International as an XML-ization of a small subset of primitives from the 
OKBC protocol called OKBC-Lite; 
RDF [Manola & Miller, 2004], developed by the W3C as a semantic-
network-based language to describe Web resources; 
RDF Schema [Brickley & Guha, 2004], also developed by the W3C, is 
an extension of RDF with frame-based primitives; the combination of 
both RDF and RDF Schema is known as RDF(S); 
OIL [Fensel et al., 2001], which is based on description logics and 
includes frame-based representation primitives; 
DAML+OIL [Horrocks & van Harmelen, 2002] is the latest release of 
the earlier DAML (DARPA Agent Markup Language), created as the 
result of a joint effort of DAML and OIL developers to combine the 
expressiveness of the two languages; 
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OWL, or Web Ontology Language [Smith et al., 2004], developed under 
the auspices of the W3C and evolved from DAML+OIL; OWL is 
currently the most popular ontology representation language. 

Some of these Web-based ontology languages are described in detail in 
Chap. 3. For more comprehensive information and comparative studies of 
all of them, see the sources cited above and [Corcho et al., 2002; Gómez-
Pérez & Corcho, 2002]. 

The ontological-engineering reality of having a number of ontology 
representation languages is best expressed in the following quotation: 

Ideally, we would like a universal shared knowledge-representation 
language to support the Semantic Web, but for a variety of pragmatic 
and technological reasons, this is unachievable in practice. Instead, we 
will have to live with a multitude of metadata representations. [Decker 
et al., 2000] 

There are a number of implications of that multitude. For example, an 
application may already use another ontology, developed in a language 
other than that which the developers have chosen for building a new 
ontology. Experience shows that combining ontologies developed using 
different languages can require a lot of effort – two languages coming 
from different branches of the ontology-language research communities 
may not be compatible, and may require painful manual adaptation in 
order to provide interoperability at a satisfactory level. However, 
sometimes the developers may be constrained by the fact that the 
development tools support only a few languages. The situation is even 
worse if there are other applications that already use an ontology that the 
new application needs to consult as well, but design considerations show 
that another language would be much more appropriate for the new 
applications. On the other hand, an appropriate ontology representation 
language may facilitate the integration of an ontology into a new 
application. Moreover, a newer ontology representation language may 
simply be more expressive than the other languages of choice, and 
translators to and from those other languages may already exist as well. 
Note that the ontology community has already developed a number of such 
translators, although many of them suffer from partial loss of knowledge in 
the translation process. 

Ontology Development Environments 

No matter what ontology representation language is used, there is usually a 
graphical ontology editor to help the developer organize the overall 
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conceptual structure of the ontology; add concepts, properties, relations, 
and constraints; and, possibly, reconcile syntactic, logical, and semantic 
inconsistencies among the elements of the ontology. In addition to 
ontology editors, there are also other tools that help to manage different 
versions of ontologies, convert them into other formats and languages, 
map and link between ontologies from heterogeneous sources, compare 
them, reconcile and validate them, and merge them. Yet other tools can 
help acquire, organize, and visualize the domain knowledge before and 
during the building of a formal ontology [Denny, 2002]. 

Graphical ontology development environments integrate an ontology 
editor with other tools and usually support multiple ontology 
representation languages. They are aimed at providing support for the 
entire ontology development process and for the subsequent use of the 
ontology [Corcho et al., 2002]. 

Protégé. Currently the leading ontology development editor and 
environment, Protégé was developed at Stanford University and has 
already been through a number of versions and modifications [Protégé, 
2005]. It facilitates the defining of concepts (classes) in an ontology, 
properties, taxonomies, and various restrictions, as well as class instances 
(the actual data in the knowledge base). Furthermore, its uniform GUI 
(Fig. 2-5) has a tab for the creation of a knowledge acquisition tool for 
collecting knowledge into a knowledge base conforming to the ontology. 
Customizable forms determine how instance information is presented and 
entered. The knowledge base can then be used with a problem-solving 
method to perform various inference tasks.  

Protégé conforms to the OKBC protocol for accessing knowledge bases 
stored in knowledge representation systems. Applications built on top of 
such systems can be executed within the integrated Protégé environment. 

Protégé supports several ontology representation languages, including 
OWL and RDF(S). Some forms of reasoning over ontologies developed 
with Protégé are also facilitated; for example, since OWL is based on 
description logics, inferences such as satisfiability and subsumption tests 
are automatically enabled. 

Protégé’s plug-in-based extensible architecture allows integration with a 
number of other tools, applications, knowledge bases, and storage formats. 
For example, there are plug-ins for the ezOWL (Visual OWL) editor, for 
the OWL-S editor (enabling loading, creating, management, and 
visualization of OWL-S services), and for Jess (which allows the use of 
Jess and Protégé knowledge bases together), as well as storage back ends 
for UML (for storing Protégé knowledge bases in UML), XML Metadata 
Interchange (XMI) (for storing Protégé knowledge bases as XMI files), 
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DAML+OIL (for creating and editing DAML+OIL ontologies), and many 
more formats. 

Fig. 2-5. A screen from Protégé 

Initially, Protégé was used to develop ontologies in application domains 
such as clinical medicine and the biomedical sciences. Over the years, its 
user community has grown rapidly and it is now used in a number of other 
application domains. More information can be found in [Noy et al., 2001]. 

Other environments. Although Protégé is currently the most widely used 
ontology development environment, there are literally dozens of other 
tools and environments. A relatively recent comparative survey [Denny, 
2004] discovered the fact that there is a lot of room for improvement in all 
such environments. For example, a number of users suggested an 
enhancement in the form of a higher-level abstraction of ontology 
language constructs to allow more intuitive and more powerful knowledge-
modeling expressions. Many users also would like friendlier visual/spatial 
navigation among concept trees/graphs and linking relations, more options 
for using reasoning facilities to help explore, compose, and check 
ontologies, more features for aligning ontologies with one another, and 
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tools that would help integrate ontologies with other data resources such as 
enterprise databases. The desirable improvements also include support for 
natural-language processing and collaborative development. 

The overall sentiment expressed by users of the various ontology 
development environments clearly reflected the need for facilitating the 
use of such tools by domain experts rather than by ontologists. Likewise, 
there is a strong need for the integration of ontology development 
environments with existing domain and core ontologies and libraries, as 
well as with standard vocabularies. Another, more contemporary focus is 
emerging as well – ontology development in concert with trends in 
enterprise application integration and development trends. 

Ontology-Learning Tools 

Ontology development is hard work. Even with the most advanced 
ontology development languages, environments, and methodologies, a 
major problem in ontological engineering still remains in the area of 
knowledge acquisition and maintenance – the collection of concepts and 
relations in a domain, achieving consensus on them among the domain 
experts and other interested parties, and frequent updates due to the 
dynamics of the knowledge structure of the domain and its unpredictable 
changes over time.

This fact has created the idea of ontology learning, with the objective of 
partially automating the processes of ontology development and 
maintenance by developing tools and frameworks to help extract, annotate, 
and integrate new information with old information in an ontology. The 
typical sources of information are Web documents, which reflect 
sufficiently well the dynamics of change in most domains. A typical 
prerequisite for enabling (semi)automated information extraction from 
Web documents is the use of natural-language-processing and text-
processing technologies. 

To this end, Maedche and Staab [Maedche & Staab, 2001] have 
proposed an ontology-learning framework and developed an ontology-
learning environment called the Text-To-Onto workbench. The framework 
and tool are based on an architecture that combines knowledge acquisition 
with machine learning from Web documents. The framework recognizes 
the fact that traditional machine learning techniques rely on data from 
structured knowledge bases or databases, and hence are not applicable to 
documents and other sources of information on the Web, which are at best 
partially structured or semistructured. Instead, the framework relies on 
natural-language-processing, data-mining, and text-mining technologies. 
The specific techniques that it applies are ontology learning from free text, 
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dictionaries, and legacy ontologies; reverse engineering of ontologies from 
database schemata; and learning from XML documents. 

The framework suggests several steps in the ontology-learning process: 

importing and reusing existing ontologies by merging their structures or 
defining mapping rules between those structures; 
modeling major parts of the target ontology using ontology extraction 
from Web documents with support from machine learning; 
outlining the target ontology to fit it to its primary purpose; 
refining the ontology at a fine granularity (in contrast to extraction); 
validating the resulting ontology by use of the target application; 
repeating the above steps to include new domains in the constructed 
ontology, to fine-tune it, or to maintain and update its scope. 

Note that much of this process is semiautomated, i.e., the ontology 
engineer is supposed to interactively select and run a number of techniques 
from a graphical environment. He/she first has to select the potential 
sources of ontological information from the Web, such as HTML and 
XML documents, databases, or existing ontologies, and then drive the 
discovery process to exploit them further. This may include indexing 
various documents, so as to transform semistructured documents such as 
online dictionaries into a predefined relational structure. The process also 
assumes access to a natural-language-processing system that enables 
lexical analysis, tokenization, named-entity recognition, and other 
operations over a free-form natural-language text. The Text-To-Onto 
ontology-learning workbench integrates an ontology editor and all of the 
above other tools and techniques. A modified, generalized association-rule 
learning algorithm known from the field of data mining is used to discover 
relations between concepts in a given class hierarchy. The relations 
discovered are collected in a database, which can be also visualized to help 
analyze the relations more effectively. 

A similar idea has been exploited by Navigli et al. in their OntoLearn 
architecture, which uses the Ariosto language processor [Navigli et al., 
2003]. OntoLearn extracts terminology from appropriate Web sites, 
warehouses, and documents exchanged among members of a virtual 
community, filters it using natural-language processing and statistical 
techniques, and interprets it semantically using the WordNet lexical 
knowledge base [WordNet, 2005]. The extracted terminology and concepts 
are then related semantically according to taxonomic (kind-of) and other 
semantic relations, obtained from WordNet and a rule-based inductive-
learning method. The initial ontology is then edited, validated, enriched, 
and updated interactively, again with the aid of WordNet, which ensures 



2.2  Ontological Engineering      65 

correct use of various synonyms, hypernyms, homonyms, and the like for 
semantic disambiguation between terms in the ontology. 

All approaches to ontology learning such as the above two are 
promising, but are still very much in the research phase and have not been 
integrated into common ontology development environments such as 
Protégé.

2.2.2  Ontology Development Methodologies 

An ontology development methodology comprises a set of established 
principles, processes, practices, methods, and activities used to design, 
construct, evaluate, and deploy ontologies. Several such methodologies 
have been reported in the literature. From surveys such as those in [Corcho 
et al., 2002] and [Staab & Studer, 2004], we can conclude that: 

most ontology development methodologies that have been proposed 
focus on building ontologies; 
some other methodologies also include methods for merging,
reengineering, maintaining, and evolving ontologies; 
yet other methodologies build on general software development 
processes and practices and apply them to ontology development. 

There is no one best methodology, because there is no one “correct” 
way to model a domain. Also, ontology development is necessarily an 
iterative process. 

Of the methodologies in the first of the above three categories, some are 
fairly general and merely suggest steps to be followed in the ontology 
development process. An example is the simple methodology proposed by 
Noy and McGuinness [Noy & McGuinness, 2001]. Others advise specific 
ontology development processes (such as the one proposed by van der Vet 
and Mars [van der Vet & Mars, 1998] for bottom-up construction of 
ontologies). As an illustration, consider the steps in the ontology-building 
process suggested in [Noy & McGuinness, 2001]: 

Determine the domain and scope of the ontology – this should help 
create a clear vision of the ontology’s coverage, its intended use, the 
types of questions the information in the ontology should provide 
answers to, and maintenance guidelines. 
Consider reusing existing ontologies – since ontology development is 
hard work, it is always a good idea to check if someone else has already 
done the work and made the result publicly available, so that it can be 
refined and extended to suit a particular domain or task. Language 



66     2.  Ontologies 

conversion, interoperability, and tool support issues are important here 
as well. 
Enumerate important terms in the ontology – this is where building the 
terminology starts. 
Define the classes and the class hierarchy – this step, closely intertwined 
with the next one, can be performed top-down (identifying the most 
general concepts and classes first), bottom-up (identifying the most 
specific ones first), middle-out (starting from some important middle-
layer concepts and expanding the hierarchy in both directions), or using 
a combination of these approaches. 
Define the properties (slots) of classes – describe the internal structure 
of concepts by explicating their extrinsic properties (e.g., name,
duration, and use), intrinsic properties (e.g., weight), parts, and relations 
to other classes and individuals in those classes. 
Define the facets of the slots – these are things such as the slot value 
type, the allowed values (domain and range), the number of values 
(cardinality), and other features of the values that the slot can take. 
Create instances – this includes filling in the slot values for each 
instance created. 

Again, the process outlined above is much more complicated in practice. 
It requires one to consider a lot of conflicting issues and a number of fine-
grained details. After multiple, usually time-consuming iterations, at least 
a minimum consensus about the final ontology should be achieved. 

An example of a more comprehensive methodology is the Methontology 
framework [Fernández-López et al., 1999]. Methontology’s starting point 
is that ontological engineering requires the definition and standardization 
of the entire ontology life cycle – from the specification of requirements to 
maintenance – as well as methodologies and techniques that drive 
ontology development through the life cycle. So, the Methontology 
framework includes: 

identification of the ontology development process; 
a life cycle based on evolving prototypes; 
the methodology itself, which specifies the steps for performing each 
activity, the techniques used, the products of each activity, and an 
ontology evaluation procedure. 

The ontology development process in Methontology comprises the 
following phases: 

specification – identification of the ontology’s terminology, primary 
objective, purpose, granularity level, and scope; 
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conceptualization – organizing and structuring in a semiformal way the 
knowledge acquired during the specification phase, using a set of 
intermediate representations that both domain experts and ontologists 
can understand (thus bridging the gap between their mindsets); 
implementation – using an ontology development environment to 
formally represent and implement the products of the above two phases, 
namely concepts, hierarchies, relations, and models. 

In addition to the above major stages of ontology development, 
Methontology covers processes that run in parallel throughout the ontology 
life cycle, i.e., along with the processes taking place in the above three 
major stages: quality assurance, integration, evaluation, maintenance, 
documentation, and configuration management. It also identifies 
interdependencies between the life cycle of the ontology being developed 
and the life cycles of other, related ontologies. Furthermore, Methontology 
specifies in detail the techniques used in each activity, the products that 
each activity outputs, and how they have to be evaluated. 

Methontology also recognizes the importance of knowledge acquisition. 
In this framework, knowledge acquisition is the long process of working 
with domain experts, and its activities are intertwined with activities from 
the specification and conceptualization phases. It comprises the use of 
various knowledge acquisition techniques (see Sect. 1.6), to create a 
preliminary version of the ontology specification document, as well as all 
of the intermediate representations resulting from the conceptualization 
phase.

Note that Methondology is suitable for building ontologies either from 
scratch or by reusing other ontologies, as they are, or by a process of 
reengineering them. 

An example of the third category of ontology development 
methodologies and processes – those that rely on general software 
engineering principles – can be found in [Devedži , 2002]. It proposes an 
ontology development methodology analogous to that of object-oriented 
software analysis and design. The rationale is as follows. Ontologies 
represent concepts, their properties, the values of those properties, events 
and their causes and effects, processes, and time [Chandrasekaran et al., 
1999]. Also, ontologies always include some kind of hierarchy, and most 
ontologies represent and support generalization, inheritance, aggregation 
(part-of), and instantiation relationships among their concepts. Nearly all 
of these issues are relevant to an object-oriented analysis and design for a 
problem domain. Moreover, the processes that ontological engineers use in 
ontology development (see above) almost coincide with established 
processes of object-oriented analysis and design (see, e.g., [Larman, 
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2001]). In both cases, it is important to assemble the domain vocabulary at 
the beginning, often starting from the domain’s generic nouns, verbs, and 
adjectives. The result of an object-oriented analysis is actually a draft of 
the domain ontology relevant to the application. True, software analysts do 
not call this result an ontology. Object-oriented analysis stresses different 
aspects from those that ontological analysis does, but the parallels are 
obvious. In the next phase, object-oriented designers define classes, 
objects, hierarchies, interface functions, and the system's behavior, while 
ontological engineers use various intermediate representations to design 
ontologies in detail. Both kinds of specialists commonly use various 
templates for specifying details of their products. Some classes become 
merged and some refined, and so do some ontologies. Class libraries and 
previous design specifications often provide the possibility of reuse in 
object-oriented design, and so do previously encoded and publicly 
available ontologies in ontological engineering. 

A similar methodology described in [Devedži , 1999] is built on the 
idea of using design patterns as simple and elegant solutions to specific 
problems in object-oriented software design [Gamma et al., 1995]. Design 
patterns provide a common vocabulary for designers to communicate, 
document, and explore software design alternatives. They contain the 
knowledge and experience that underlie many redesign and recoding 
efforts of developers who have struggled to achieve greater reuse and 
flexibility in their software. Although design patterns and ontologies are 
not the same, they overlap to some extent. First, both of them are about 
vocabularies, about knowledge, and about “architectural armatures”. Both 
concepts also describe things at the knowledge level. Ontologies are more 
commonsense-oriented; design patterns are more concrete. Next, it is 
possible to draw an analogy between libraries of ontologies and catalogs of 
design patterns. Although catalogs of design patterns do not provide ready-
to-use building blocks like ontologies from libraries, some attempts are 
being made to make ready-to-use blocks available from them (see, e.g., 
[Staab & Studer, 2004]). Also, it does not take a hard mental shift to view 
ontologies as abstract patterns or as knowledge skeletons of domains. 
Likewise, it is not too hard to understand design pattern templates as 
knowledge of what the ontologies of design patterns may look like. All of 
these similarities support the possibility of developing ontologies in much 
the same way as software systems are developed using design patterns. 

Two important observations come out of this brief survey of ontology 
development methodologies. First, there are many common points in the 
various methodologies. Steps in different processes may be named 
differently, may also be of different granularity, or may only partially 
overlap, but the processes are still very much alike. Second, many of the 
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principles and practices of ontology development are analogous to those of 
software engineering. The major topic of this book – applying the 
principles and standards of the MDA modeling and development approach, 
taken from software engineering, to ontology development – is completely 
in line with these observations. 

2.3 Applications 

Ontologies have become a major conceptual backbone for a broad 
spectrum of applications [Staab & Studer, 2004]. There is an increasing 
awareness among researchers and developers that ontologies are not just 
for knowledge-based systems, but for all software systems – all software 
needs models of the world, and hence can make use of ontologies at design 
time [Chandrasekaran et al., 1999]. The major application fields for 
ontologies nowadays include knowledge management, e-learning, e-
commerce, and integration of Web resources, intranet documents, and 
databases. They also include cooperation of Web services with enterprise 
applications, natural-language processing, intelligent information retrieval 
(especially from the Internet), virtual organizations, and simulation and 
modeling. The following examples from a broad spectrum of ontology 
application scenarios are but a few typical illustrations. 

2.3.1  Magpie 

Magpie is a tool that supports semantic interpretation of Web pages, thus 
enabling intelligent Web browsing [Domingue et al., 2004]. It 
automatically associates an ontology-based semantic layer with Web 
resources, which enables the invocation of relevant services within a 
standard Web browser. In other words, ontologies make it possible to 
associate meaning to information on a Web page and then, on the basis of 
the identified meaning, to offer the user appropriate functionalities. In fact, 
Magpie offers complementary knowledge sources relevant to a Web 
resource, thus facilitating quick access to the underlying background 
knowledge and helping the user to make sense of content and contextual 
information on Web pages the user may be unfamiliar with. 

Magpie works as a plug-in to standard Web browsers and appears as an 
additional toolbar in the browser. It relies on the availability of ontologies 
that represent various domains of discourse. The user can select an 
ontology for Magpie to work with, and the buttons that will appear in the 
Magpie toolbar will correspond to the concepts in the ontology. He/she can 
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then use the Magpie toolbar to toggle highlighting of specific concepts of 
interest to him/her for the browsing session. The underlying ontology 
selected must be populated by instances, possibly automatically mined 
from relevant Web pages. The browser, when showing a Web page, will 
then highlight information related to the types of entities in the ontology 
that the user has selected from the Magpie toolbar. For example, if the 
ontology selected is the Musician ontology, and the highlighted concepts 
in the Magpie toolbar are Instrument and Album, in the home page of, say, 
a rock and roll star shown in the browser, words such as “guitar” and 
“keyboards” will be highlighted, and so will the titles of the star’s albums. 

Magpie detects patterns in the browsing session by tracking interesting 
items in the browsing log with the aid of an ontology-based filter. When a 
pattern is detected, Magpie activates an appropriate context-dependent 
trigger service. In the case of the Musician ontology and Web pages 
related to musicians and their activities, Magpie may use one panel to 
show the names of the musicians that it has semantically recognized from 
the Web pages in the browsing log, and another panel to show the titles of 
all of the albums related to those names in one way or another. In yet 
another panel, it may show musicians and albums not explicitly mentioned 
on the pages accessed in that session, but obtained from the populated 
ontology. This reveals explicitly to the user the information semantically 
related to the context of the browsing session. By right-clicking on any of 
the highlighted concepts on the page shown, the user can access from a 
popup menu any of the context-dependent (i.e., ontology-dependent) 
semantic services. In the case of musicians, these might be related to their 
concerts and tours, colleagues, managers, and so forth. 

2.3.2  Briefing Associate  

Knowledge sharing and reuse through automatic exchange of Web 
documents among applications and agents is possible only if the 
documents contain ontologically encoded information, often called 
semantic markup or semantic annotation, that software agents and tools 
can interpret accurately and reliably. Current annotation technology is 
covered in more detail in Chap. 3, but it suffices for this overview of 
Briefing Associate to note that annotation is usually performed manually 
(using annotation tools), which is a tedious and error-prone process. 
Briefing Associate deploys ontological knowledge to encode document 
annotation automatically as authors produce documents [Tallis et al., 
2002]. 
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The approach used in Briefing Associate can be described in simple 
terms as extending a commercial, frequently used document editor with 
ontology-based additional tools that the targeted category of authors will 
be highly motivated to use. Whenever such an author applies any of the 
additional tools, an appropriate annotation is automatically created and 
inserted into the document. Thus annotation comes at virtually no extra 
cost, as a by-product of activities that the author would perform anyway. 
The prerequisites include the existence of domain ontologies that authors 
creating documents can rely on, and easy creation of specific widgets to 
represent the ontology-based additional editing tools. 

To this end, Briefing Associate has been implemented as an extension of 
Microsoft’s PowerPoint in much the same way as Magpie extends standard 
Web browsers (see above) – it appears in PowerPoint’s native GUI as a 
toolbar for adding graphics that represent a particular ontology’s classes 
and properties. The graphical symbols on the toolbar are obtained from a 
special-purpose tool that lets graphic designers create such symbols to 
visually annotate ontologies. In a hypothetical example, the Musician 
ontology might be visualized with that tool and various graphical symbols 
might be created to represent musical events, instruments, and the other 
concepts in the ontology. These symbols would then be inserted into the 
toolbar to represent the domain ontology (Musician) in PowerPoint. 

To the domain author, the native PowerPoint GUI is still there, the 
editing process continues normally, and the resulting slide show looks as if 
the ontology was not used in the editing of the presentation. However, 
using any graphical symbol from the additional toolbar in the presentation 
document results in inserting a transparent annotation into the slides, 
which is saved with the document. PowerPoint installations not extended 
with Briefing Associate ignore such transparent annotations. However, the 
point is that the annotation can be used by Briefing Associate internally to 
produce various metadata (such as the document title, the author, and a 
reference to the ontology used), and additional XML-based documents that 
can be published on the Web so that other agents and applications can 
locate the main document more easily and automatically interpret its 
content in terms of the concepts in the ontology. 

2.3.3  Quickstep and Foxtrot 

Quickstep and Foxtrot are ontology-based recommender systems that 
recommend online academic research papers [Middleton et al., 2004]. 
Although they both focus on a relatively small target group of Web users, 
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the principles built into these two systems can be translated to other target 
groups as well. 

In general, recommender systems unobtrusively watch user behavior 
and recommend new items that correlate with a user’s profile. A typical 
example of such recommendation can be found on Amazon.com, where 
users obtain suggestions about what books, CDs, and other items to buy 
according to their observed shopping behavior and a previously created set 
of user profiles. Recommender systems usually create user profiles on the 
basis of user ratings of specific items and the content of items; however, in 
many cases, this may be insufficient and can lead to inconsistent 
recommendations. 

Quickstep and Foxtrot rely on ontology-based user profiling. They use a 
research-paper topic ontology to represent user interests in ontological 
terms. True, some of the fine-grained information held in the raw examples 
of interest is lost in this way. However, the ontology allows inference to 
assist user profiling through is-a relationships in the topic classification. 
Moreover, communication with other, external ontologies is enabled, and 
so is visualization of user profiles in terms of the topic ontology. Both 
systems provide a set of labeled example papers for each concept in the 
ontology to assist the creation of initial user profiles. The users themselves 
can add papers of interest to such sets in order to fine-tune their profiles 
and to reflect their changing needs. Through profile visualization, the users 
can better understand what the recommenders “think” about their interests 
and adjust their profiles interactively. 

2.4 Advanced Topics 

Being shared world models, content theories, representational artifacts of 
essential knowledge about topics and domains, and reusable building 
blocks of knowledge-based systems, ontologies are also tightly coupled to 
other concepts related to domain/world modeling, such as metadata and 
metamodeling. Being simultaneously concept hierarchies, ontologies also 
raise the question of how far the generalization/specialization in the 
hierarchies can extend. 

2.4.1  Metadata, Metamodeling, and Ontologies 

The prefix “meta” means one level of description higher. Metadata are 
data about data, and a metamodel is a model used to describe other models. 
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Metadata are descriptions of data, and metamodels are descriptions used to 
characterize models. 

From a more practical point of view, metadata most often represent 
some description of digital resources, especially on the Web. Such a 
description is a mechanism for expressing the semantics of the resource, as 
a means to facilitate seeking, retrieval, understanding, and use of 
information. The nature and purpose of metadata are referential, that is, 
metadata express something about some resource. For example, Web 
documents, considered as a class of resources, are described in terms of 
their authors, titles, URIs, etc. A specific Web document is described by a 
metadata record containing metadata (characterizing all Web documents) 
and their specific values (characterizing that specific document only), i.e., 
by a set of attribute–value pairs (metadata–value pairs) such as “author–
Denny, M.”, and “title–Ontology building: a survey of editing tools”. 

Metadata can be expressed in various forms. For example, the title
element of an HTML page represents embedded metadata. A metadata
language is a shared description system that can be used to encode 
metadata. 

One view of ontology representation languages is that they can be used 
as metadata languages – ontologies engineered with such languages can 
provide vocabularies for metadata to facilitate the management, discovery, 
and retrieval of resources on the Web. However, some consistency must be 
ensured in using terms defined in these ontologies as metadata. To an 
extent, this has been provided by standardization initiatives such as the 
Dublin Core Metadata Initiative [DC Metadata Schema, 2005], which 
promotes the widespread adoption of interoperable metadata standards and 
is developing specialized metadata vocabularies for describing various 
electronic resources. The purpose of such standards is to support both 
machine interoperability (information exchange) and targeted resource 
discovery by human users of the Web. 

A metamodel is an explicit model of the constructs and rules needed to 
build specific models within a domain of interest. This characterizes a 
valid metamodel as an ontology, since such constructs and rules represent 
entities in a domain and their relationships, i.e., a set of building blocks 
used to build domain models. In other words, a metamodel is an ontology 
used by modelers. For example, when software developers use UML to 
construct models of software systems, they actually use an ontology 
implemented in it. This ontology defines concepts such as objects, classes, 
and relations. However, not all ontologies are modeled explicitly as 
metamodels.
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2.4.2  Standard Upper Ontology 

Imagine that someone wants to extend the simple Musician ontology 
shown in Figs. 2-2–2-4 and has included concepts such as street musician,
professional musician, and occasional musician using a direct is-a link 
(relation) to the higher-level concept of musician. In the case of the 
Musician ontology, musician is also one of the top-level concepts. 
However, an obvious question might be: Is there an even higher-level, 
more general concept than musician that we can use as a generalization of 
the concept of musician through another direct is-a link? In other words, 
what concept extends the Musician ontology upwards, starting from the 
concept of musician?

Apart from the obvious dilemma of selecting the right concept to suit 
one’s purpose (is that concept Performer, Profession, or something else?), 
another problem quickly becomes apparent when one starts thinking about 
such extensions – how far up is it possible to go in this way? The problem 
can be reformulated as a series of questions such as: 

Is there a highest, root concept, and if so, what is it? 
What does the hierarchy of higher, i.e., upper-level, concepts look like? 
Who is responsible for those upper-level concepts? 

The first question is easy to answer, but only technically – just as Java 
defines the Object class as the topmost class, it is possible to define such a 
root concept to model all of the upper-level concepts in a single upper-
level ontology. In fact, there are examples of such technical approaches 
and even implementations of the concept of “topmost”; for instance, 
Protégé internally implements the concept of Thing as the root concept of 
all hierarchies and ontologies. 

However, the problem is far more complex than a simple technical 
implementation, because it concerns a number of scientific and technical 
disciplines. Today, researchers in the fields of computer science, artificial 
intelligence, philosophy, library science, and linguistics are making 
attempts to formulate a comprehensive, formal, upper-level ontology to 
provide definitions for general-purpose terms and act as a foundation for 
more specific domain ontologies. However, workers in none of these fields 
have been able, on their own, to construct a standard upper-level ontology 
[Niles & Pease, 2001]. 

It is intuitively clear that such an endeavor must be a collaborative effort 
of specialists from different fields, but that fact creates a consensus 
problem – philosophers themselves have not yet reached a consensus on 
what the upper-level concept hierarchy should look like, let alone the 
question of a consensus among experts from other disciplines. Fig. 2-6 
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shows some of the proposed hierarchies (root concepts shown in bold 
face), but the second of the questions listed above is still open. Although 
the hierarchies represented may appear to be trees, in many approaches 
they are actually more complex structures, i.e., lattices. In Fig. 2-6c, for 
example, a lattice is implicitly present in the fact that the Collection 
concept appears in two different branches, which, in terms of frame-based 
languages, implies multiple inheritance. For the sake of simplicity, the 
representation in Fig. 2-6b is not shown here in its expanded version, 
which is actually also a complex lattice [Sowa, 2000]. Its root concept, ,
was originally defined as universal type that subsumes all other concepts. 

Entity 
Physical 
 Object 
  SelfConnectedObject 
   ContinuousObject 
   CorpuscularObject 
  Collection 
 Process 
Abstract 
 Set 
  Class 
   Relation 
 Proposition 
 Quantity 
  Number 
  PhysicalQuantity 
 Attribute 

(a) 

Thing 
IndividualObject 
 Event 
 Stuff 
Intangible 
 IntangibleObject 
 Collection 
RepresentedThing 
 Collection 
 Relationship 

(c) 

Independent 
Continuant 
Physical 
Relative 
Abstract 
Occurent 
Mediating 

(b)

Fig. 2-6. Top levels of various concept hierarchies for the upper-level ontology: 
(a) according to [Niles & Pease, 2001]; (b) according to [Sowa, 2000]; (c) 
according to [Lenat & Guha, 1990; Lenat, 1995]. 

It is clear from Fig. 2-6 that a consensus is so much lacking that even 
the term used for the root concept is different in different representations. 
The lack of a consensus arises for an obvious reason: it is extremely 
difficult to conceive such a very large, wide-coverage ontology, in spite of 
the fact that there is a need for one and that there already exist the 
necessary formal ontology representation languages. 

Going back to practice, the need for a standard upper-level ontology was 
the driving force that caused the IEEE to organize the Standard Upper 
Ontology Working Group (SUO WG) to develop such a standard ontology 
under its project P1600.1 [SUO WG, 2005]. This is, at least at the moment, 
an answer to the third of the questions listed above. The standard upper 
ontology (SUO) that will result from this project is limited to metaconcepts 
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and generic, abstract, and philosophical concepts, which therefore are 
general enough to address (at a high level) a broad range of domain areas. 
It is intended to provide a structure and a set of general concepts upon 
which domain ontologies (e.g. medical, financial, or engineering) could be 
constructed. The collaborators in the SUO WG come from various fields 
of engineering, philosophy, and information science. The group has started 
from several upper-level ontologies suggested in the literature so far (e.g., 
SUMO (Suggested Upper Merged Ontology) [Niles & Pease, 2001], the 
CYC ontology [Lenat & Guha, 1990; Lenat, 1995], the upper-level 
ontology described by Russell and Norvig [Russell & Norvig, 2002], and 
John Sowa’s upper-level ontology [Sowa, 2000]) and is trying to 
accommodate most of their concepts and relations under the same 
umbrella. It is estimated that the SUO will eventually contain between 
1000 and 2500 terms and roughly ten definitional statements for each term. 
Currently, the representation language used for the SUO is a somewhat 
simplified version of KIF, called SUO-KIF. 

When completed, the SUO is envisioned to have a variety of purposes, 
such as the design of new knowledge bases and databases, 
reuse/integration of legacy databases (by mapping their data elements to a 
common ontology), and integration of domain-specific ontologies. Since 
the SUO is an IEEE-sponsored open-source standards effort, it is hoped 
that it will eventually be embraced by a large class of users. Also, the SUO 
is based on very pragmatic principles and any distinctions of strictly 
philosophical interest have been removed from it [Niles & Pease, 2001]; 
because of this, it should be simpler to use than some of the other upper-
level ontologies that the working group started from. 

The point is that the SUO will contribute to the goal of enhancing 
application interoperability by providing a common framework for the 
integration and sharing of different databases, knowledge bases, and 
domain ontologies, by virtue of shared terms and definitions. An important 
implication is that all other SUO-compliant ontologies that may exist 
under such a common ontological framework will be interconnected in 
some way. 

2.4.3  Ontological Level 

Recalling Allen Newell's idea of describing knowledge representation in 
terms of the implementation, logical, and knowledge levels (Sect. 1-8), one 
may ask a simple question: Where do ontologies come in this three-layer 
scheme? They do have a formal representation and structure, and thus 
might be thought of as parts of the logical level. On the other hand, they 
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also represent the essential concepts and relations in a domain, and all of 
the other domain knowledge relies on them, which may qualify them as 
parts of the knowledge level. 

The dilemma was resolved by Guarino [Guarino, 1995], who proposed 
the notion of the ontological level and placed it as an intermediate level in 
between the logical and knowledge levels. The purpose of the ontological 
level is to constrain and to make explicit the intended model of the 
knowledge representation language, i.e., the intended meaning of the 
primitives of the knowledge representation formalisms used. 

As an example, consider the following expression at the logical level: 
x. Musician(x) Beginner(x). At the knowledge level, this expression 

may be intended to mean that Musician is a concept and that Beginner is 
the value (filler) of the property Level. However, it is also perfectly valid 
in the real world to think of Beginner as a concept as well. If the modeler 
wants to make sure that the system interprets Beginner as the value of the 
property Level, and not as another concept, then it is actually the ontology 
that must explicitly state so, thus explicitly constraining the possible 
interpretations.



3. The Semantic Web 

The Semantic Web is the new-generation Web that tries to represent 
information such that it can be used by machines not just for display 
purposes, but for automation, integration, and reuse across applications 
[Boley et al., 2001]. It has been one of the hottest R&D topics in recent 
years in the AI community, as well as in the Internet community – the 
Semantic Web is an important W3C activity [SW Activity, 2005]. 

Semantic Web is about making the Web more understandable by 
machines [Heflin & Hendler, 2001]. It is also about building an 
appropriate infrastructure for intelligent agents to run around the Web 
performing complex actions for their users [Hendler, 2001]. In order to 
do that, agents must retrieve and manipulate pertinent information, 
which requires seamless agent integration with the Web and taking full 
advantage of the existing infrastructure (such as message sending, 
security, authentication, directory services, and application service 
frameworks) [Scott Cost et al., 2002]. Furthermore, Semantic Web is 
about explicitly declaring the knowledge embedded in many Web-
based applications, integrating information in an intelligent way, 
providing semantic-based access to the Internet, and extracting 
information from texts [Gómez-Pérez & Corcho, 2002]. Ultimately, 
Semantic Web is about how to implement reliable, large-scale 
interoperation of Web services, to make such services computer 
interpretable – to create a Web of machine-understandable and 
interoperable services that intelligent agents can discover, execute, and 
compose automatically [McIlraith et al., 2001].  [Devedži , 2004a] 1

                                                     
1 Paragraph reprinted (with minor adjustments to citation formatting) with 

permission from IOS Press. 
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3.1 Rationale2

Why do we need all that? Isn't the Web an immense, practically unlimited 
source of information and knowledge that everyone can use? 

The problem is that the Web is huge, but not smart enough to easily 
integrate all of those numerous pieces of information from the Web that a 
user really needs. Such integration at a high, user-oriented level is 
desirable in nearly all uses of the Web. Today, most of the Web 
information is represented in natural-language; however, our computers 
cannot understand and interpret its meaning. Humans themselves can 
process only a tiny fraction of information available on the Web, and 
would benefit enormously if they could turn to machines for help in 
processing and analyzing the Web contents [Noy et al., 2001]. 
Unfortunately, the Web was built for human consumption, not for machine 
consumption – although everything on the Web is machine-readable, it is 
not machine-understandable [Lassila, 1998]. We need the Semantic Web 
to express information in a precise, machine-interpretable form, ready for 
software agents to process, share, and reuse it, as well as to understand 
what the terms describing the data mean. That would enable Web-based 
applications to interoperate both on the syntactic and the semantic level.

Note that it is Tim Berners-Lee himself who pushes the idea of the 
Semantic Web forward. The father of the Web first envisioned a Semantic 
Web that provides automated information access based on machine-
processable semantics of data and heuristics that use these metadata 
[Berners-Lee et al., 1999; Berners-Lee et al., 2001]. The explicit 
representation of the semantics of data, accompanied with domain theories 
(that is, ontologies), will enable a Web that provides a qualitatively new 
level of service – for example, intelligent search engines, information 
brokers, and information filters [Decker et al., 2000; Fensel & Musen, 
2001]. 

People from W3C already develop new technologies for Web-friendly 
data description. Moreover, AI people have already developed some useful 
applications and tools for the Semantic Web [Noy et al., 2001; Scott Cost 
et al., 2002]. 

There is a number of important issues related to the Semantic Web. 
Roughly speaking, they belong to four categories: languages for the 
Semantic Web, ontologies, semantic markup of pages on the Semantic 
Web, and services that the Semantic Web is supposed to provide. 

                                                     
2 Reprinted (with minor adjustments to citation formatting) from [Devedži ,

2004a] with permission from IOS Press. 
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3.2 Semantic Web Languages 

In the literature, the Web-based ontology languages listed in Chap. 2 are 
usually called Semantic Web languages as well. However, W3C is more 
specific about this 

The Semantic Web Activity develops specifications for technologies 
that are ready for large scale deployment, and identifies infrastructure 
components through open source advanced development. The principal 
technologies of the Semantic Web fit into a set of layered 
specifications. The current components are the Resource Description 
Framework (RDF) Core Model, the RDF Schema language and the 
Web Ontology language (OWL). Building on these core components is 
a standardized query language, SPARQL, enabling the “joining” of 
decentralized collections of RDF data. These languages all build on the 
foundation of URIs, XML, and XML namespaces. [W3C SW Activity, 
2005] 

The above statement is a rough textual equivalent of Tim Berners-Lee's 
vision of Web development, aptly nicknamed the “Semantic Web layer-
cake”, Fig. 3-1 [Berners-Lee et al., 1999; Berners-Lee et al., 2001]. Note 
that in the Semantic Web layer-cake, higher-level languages use the syntax 
and semantics of the lower levels. All Semantic Web languages use XML 
syntax; in fact, XML is a metalanguage for representing other Semantic 
Web languages. For example, XML Schema defines a class of XML 
documents using the XML syntax. RDF provides a framework for 
representing metadata about Web resources, and is XML-based as well. 
RDF Schema, OWL, and other ontology languages also use the XML 
syntax. 

The following subsections discuss the Semantic Web layer-cake in more 
detail and depict the genesis of the current state of the art in the domain of 
Semantic Web languages. 

3.2.1  XML and XML Schema 

It is important for Semantic Web developers to agree on the data’s syntax 
and semantics before hard-coding them into their applications, since 
changes to syntax and semantics necessitate expensive modifications of 
applications [Wuwongse et al., 2002]. 

Current Semantic Web languages rely on an XML-based syntax [Klein, 
2001; XML, 2005]. Generally, XML (eXtensible Markup Language) 
enables the specification and markup of computer-readable documents. It 
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looks very much like HTML in that special sequences of characters – tags 
– are used to mark up the document content, and that XML data is stored 
as ordinary text. Unlike HTML, however, XML can be used to annotate 
documents of arbitrary structure, and there is no fixed tag vocabulary. 
Typically, XML tags contain information indicating the human 
interpretation of pieces of the document's content, such as <name>,
<musician>, and <record>. Thus XML lets people meaningfully annotate 
documents by adding context to and indicating the meaning of the data. 
People can define their own custom tags to represent data logically, 
making XML documents self-describing (because the tags describe the 
information the documents contain). 

Fig. 3-1. Tim Berners-Lee’s Semantic Web layer-cake 

Fig. 3-2 shows an example of how the same piece of information can be 
represented in HTML and in XML. Obviously, HTML is layout-oriented, 
whereas XML is more structure-oriented. 

<UL> 

<LI>Eric Clapton, <EM>Unplugged</EM>, Reprise/WEA, 1992. 

</UL> 

(a)

<ALBUM> 

    <AUTHOR> Eric Clapton </AUTHOR> 
    <TITLE> Unplugged </TITLE> 
    <LABEL> Reprise/WEA </LABEL> 
    <YEAR> 1992 </YEAR> 

</ALBUM> 

(b)

Fig. 3-2. (a) A piece of HTML code (b) The same information in XML code 
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However, XML does not itself imply a specific machine interpretation 
of the data. In the piece of XML in Fig. 3-2b, the meaning is not formally 
specified. The information is only encoded in an unambiguous syntax, but 
its use and the semantics are not specified. In other words, XML is aimed 
only at the structure of a document, not at a common machine 
interpretation of it. It provides only a data format for structured documents, 
without specifying a vocabulary. 

On the other hand, owing to the standardized data format and structure 
of XML documents, programs and scripts can dynamically access and 
update the content, structure, and style of such documents [DOM, 2005]. 
Appropriate parsers and other processing tools for XML documents are 
readily available. Moreover, XML is extensible in a standardized way, and 
hence enables customized markup languages to be defined for unlimited 
types of documents.

Using XML for document and data exchange among applications 
requires prior agreement on the vocabulary, its use, and the meaning of its 
terms. Such agreement can be partly achieved by using XML schemas, 
which provide a mechanism to specify the structure of XML documents. 
Every XML schema provides the necessary framework for creating a 
category of XML documents [XML Schema, 2005]. The schema describes 
the various tags, elements, and attributes of an XML document of that 
specific category, the valid document structure, the constraints, and the 
custom data types (these are based on built-in types, such as integer and 
string). The XML Schema language also provides some limited support for 
specifying the number of occurrences of child elements, default values, 
choice groups, etc. The encoding syntax of the XML Schema language is 
XML, and just like XML itself XML Schema documents use namespaces
that are declared using the xmlns attribute. The example schema in Fig. 3-3 
declares the xsd namespace and uses it throughout its element definitions. 
Namespaces define contexts within which the corresponding tags and 
names apply. The schema shown corresponds to a category of XML 
documents such as that shown in Fig. 3-2b. 

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema"> 
<xsd:element name="ALBUM" type="ALBUMTYPE"/> 
<xsd:complexType name="ALBUMTYPE" > 
    <xsd:element name="AUTHOR" type="xsd:string" 
        minOccurs="1" maxOccurs="unbounded"/> 
    <xsd:element name="TITLE" type="xsd:string"/> 
    . . . 
    <xsd:element name="YEAR" type="xsd:integer"/> 
</xsd:complexType> 
</xsd:schema>

Fig. 3-3. An example of an XML schema 
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3.2.2  RDF and RDF Schema 

XML provides an easy-to-use syntax for encoding all of the kinds of data 
that are exchanged between computers, by using XML schemas to 
prescribe the data structure. However, since it does not provide any 
interpretation of the data beforehand, it does not contribute much to the 
semantic aspect of the Semantic Web. To provide machine interpretation 
of Web data, a standard model is needed to describe facts about Web 
resources. Such a standard model can be specified by use of RDF and RDF 
Schema. 

RESOURCE       PROPERTY   VALUE
http://www.music.org/albums#EC_Unplugged  author   "Eric Clapton" 
http://www.music.org/albums#EC_Unplugged  title   "Unplugged" 
http://www.music.org/albums#EC_Unplugged  label   "Reprise/WEA" 
http://www.music.org/albums#EC_Unplugged  year   "1992" 
http://www.music.org/albums#EC_Unplugged  content  http://www.music.org/contents#Acoustic3 
http://www.music.org/contents#Acoustic3  type   "acoustic" 
http://www.music.org/contents#Acoustic3  recording  "live" 
http://www.music.org/contents#Acoustic3  listening  "easy" 

http://www.music.org/albums#EC_Unplugged 

http://www.music.org/contents#Acoustic3 

Unplugged 

Reprise/WEA 

1992 

live 

easy 

acoustic 
title 

label 
year 

content 

recording 

listening 

type 

Eric Clapton 
author 

Fig. 3-4. Examples of RDF resources, properties, and values, and the 
corresponding graph 

RDF’s model for representing data about “things on the Web” 
(resources) is that of O–A–V triplets and semantic networks. A resource 
description in RDF is a list of statements (triplets), each expressed in terms 
of a Web resource (an object), one of its properties (attributes), and the 
value of the property [Manola & Miller, 2004]. The value can be a literal 
(text), or another resource. Every RDF description can be also represented 
as a directed labeled graph (a semantic network), parts of which are 
equivalent to RDF statements. Figure 3-4 shows several such triplets and 
the corresponding graph. These can be represented in an RDF encoding 
(which also uses XML syntax) as in Fig. 3-5. 

The fact that the value of a property in an RDF encoding can be either a 
literal value or another resource creates a stripping pattern in the RDF 
encoding format (Fig. 3-6). This makes it easy to check the overall 
consistency of an RDF-encoded document. It also makes RDF a suitable 
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format for visual knowledge representation languages based on semantic 
networks.

<Album rdf:ID="EC_Unplugged"
            xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
            xmlns="http://www.music.org/albums#" 
            xml:base="http://www.music.org/albums"> 
     <author>Eric Clapton</author> 
     <title>Unplugged</title> 
     <label>Reprise/WEA</label> 
     <year>1992</year> 
     <content> 
         <Content rdf:ID="Acoustic3" 
                    xmlns="http://www.music.org/contents#"> 
             <type>acoustic</type> 
             <listening>easy</listening> 
             <recording>live</recording> 
         </Content> 
     </content> 
</Album> 

Fig. 3-5. RDF encoding of the resources shown in Fig. 3-4 

An RDF model itself provides only a domain-neutral mechanism to 
describe individual resources. It neither defines (a priori) the semantics of 
any application domain, nor makes assumptions about a particular domain. 
Defining domain-specific features and their semantics, i.e., ontologies, 
requires additional facilities. RDF itself is used to describe instances of 
ontologies, whereas RDF Schema encodes ontologies. 

RDF Schema (RDFS) provides an XML-based vocabulary to specify 
classes and their relationships, to define properties and associate them with 
classes, and to enable the creation of taxonomies [Brickley & Guha, 2004]. 
To do all this, RDFS uses frame-based modeling primitives such as Class,
subClassOf, Property, and subPropertyOf. The Resource concept occurs in 
the root of all hierarchies and taxonomies. Figure 3-7 shows an example of 
an RDFS encoding. 

There is an important departure in RDFS from the classical frame-based 
paradigm: properties are defined separately from classes. An implication is 
that anyone, anywhere, anytime can create a property and state that it is 
usable with a class, or with multiple classes. Each property is typically 
described by rdfs:domain and rdfs:range, which restrict the possible 
combinations of properties and classes. For example, in Fig. 3-7 the 
domain of the property year is restricted to the class Album, which means 
that this property is used only with that class. On the other hand, a property 
may be defined so as to feature multiple classes. As in the classical case, in 
class hierarchies classes inherit properties from their ancestors. 
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<?xml version="1.0"?>
<Resource-A>

<property-A>
<Resource-B>

<property-B>
<Resource-C>

<property-C>
Value-C

</property-C>
</Resource-C>

</property-B>
</Resource-B>

</property-A>
</Resource-A>

<?xml version="1.0"?>
<Resource-A>

<property-A>
<Resource-B>

<property-B>
<Resource-C>

<property-C>
Value-C

</property-C>
</Resource-C>

</property-B>
</Resource-B>

</property-A>
</Resource-A>

Fig. 3-6. The stripping pattern of an RDF model 

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
  xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
  xml:base="http://www.music.org/albums"> 

    <rdfs:Class rdf:ID="Album"> 
        <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> 
    </rdfs:Class> 

    <rdfs:Class rdf:ID="Content"> 
        <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> 
    </rdfs:Class> 

    ... 

    <rdf:Property rdf:ID="author"> 
        <rdfs:domain rdf:resource="#Album"/> 
        <rdfs:range rdf:resource="#Musician"/> 
    </rdf:Property> 

    ... 

    <rdf:Property rdf:ID="year"> 
        <rdfs:domain rdf:resource="#Album"/> 
        <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/> 
    </rdf:Property> 

    ... 

</rdf:RDF> 

Fig. 3-7. RDFS encoding of albums (excerpt) 

RDF(S) provides a standard model to describe facts about Web 
resources, but modelers often need even richer and more expressive 
primitives to specify the formal semantics of Web resources. RDFS is 
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quite simple compared with full-fledged knowledge representation 
languages. For example, one cannot state in RDFS that “this class is 
equivalent to this other class”, and cannot specify cardinality constraints.  

3.2.3  DAML+OIL 

DAML+OIL has evolved from two other languages, DAML-ONT 
[Hendler & McGuinness, 2000] and OIL [Fensel et al., 2001], both of 
which were heavily influenced by RDF(S). In the context of the Semantic 
Web layer-cake (Fig. 3-1), RDF(S) defines a simple model for 
representing semantics and basic ontological-modeling primitives, whereas 
DAML-ONT, OIL, and DAML+OIL all aim at providing a more 
expressive ontology development vocabulary. They offer richer ways to 
define concepts and attributes, and a more intuitive choice of some of the 
modeling primitives (widely used modeling primitives from logic-based 
and frame-based languages). 

DAML-ONT [Hendler & McGuinness, 2000] was part of the DARPA
Agent Markup Language (DAML) initiative, aimed at supporting the 
development of the Semantic Web. As an ontology language, it covered 
the capturing of definitions of terms – classes, subclasses, and their 
properties, as well as their restrictions and individual object descriptions. 
Another part of the DAML language (called DAML-LOGIC) addressed 
the issue of encoding inference and general logical implications. DAML-
ONT stressed the role of ontological markup of Web resources to facilitate 
intercommunication between agents. 

OIL (Ontology Inference Layer) originated from a European initiative; 
its formal semantics was based on description logics and it had a set of 
customized editors and inference engines to support working with it 
[Fensel et al., 2001]. One of OIL’s important emphases was on a layered 
approach to ontology language specification. Core OIL largely coincides 
with RDFS. This means that even simple RDFS agents can process Core 
OIL ontologies and understand their semantics, and that an OIL processor 
can understand RDFS. Standard OIL captures semantics and makes 
complete inference viable by means of the necessary mainstream modeling 
primitives, such as Class-def (equivalent to rdfs:Class), Subclass-of (rdfs:-
subClassOf), Slot constraint (oil:hasSlotConstraint and oil:SlotConstra-
int), AND (oil:and), NOT (oil:not), and Has-value (oil:hasValue).
Furthermore, Instance OIL provides thorough integration of individuals 
through a full-fledged database capability, and Heavy OIL opens the 
language to the possibility of including even higher-level representational 
and reasoning needs, such as various rule languages and metaclasses. 
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<rdf:RDF 
  xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
  xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
  xmlns:daml="http://www.daml.org/2001/03/daml+oil#" 
  xmlns     ="http://www.daml.org/2001/03/daml+oil-ex#" 
>

<daml:Ontology rdf:about=""> 
  <rdfs:comment> 
    An example simple DAML+OIL ontology. 
  </rdfs:comment> 
  <daml:imports rdf:resource="http://www.daml.org/2001/03/daml+oil"/> 
</daml:Ontology> 

<daml:Class rdf:ID="Musician"> 
  <rdfs:label>Musician</rdfs:label> 
  <rdfs:comment> 
    This class assumes just two disjoint kinds of musicians - instrumentalists and singers. 
  </rdfs:comment> 
</daml:Class> 

<daml:Class rdf:ID="Album"> 
  <rdfs:label>Album</rdfs:label> 
  <rdfs:comment> 
    The class describing recorded albums. 
  </rdfs:comment> 
</daml:Class> 

<daml:Class rdf:ID="Instrumentalist"> 
  <rdfs:subClassOf rdf:resource="#Musician"/> 
</daml:Class> 

<daml:Class rdf:ID="Singer"> 
  <rdfs:subClassOf rdf:resource="#Musician"/> 
  <daml:disjointWith rdf:resource="#Instrumentalist"/> 
</daml:Class> 

…

</rdf:RDF>

Fig. 3-8. An example DAML+OIL ontology – header and classes (excerpt) 

DAML+OIL [Horrocks & van Harmelen, 2002; Scott Cost et al., 2002] 
has merged the principles and advantages of DAML and OIL, in an effort 
to develop a universal Semantic Web language that can enable machines to 
read data and interpret and draw inferences from it. As a result, and in 
addition to providing rules and definitions similar to those of RDF(S), 
DAML+OIL also enables further constraints and relationships among 
resources to be specified, including cardinality, domain and range 
restrictions, and union, disjunction, inverse, and transitive rules. 
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<rdf:RDF 
…
>

…

<daml:ObjectProperty rdf:ID="isAuthorOf"> 
  <rdfs:domain rdf:resource="#Musician"/> 
  <rdfs:range rdf:resource="#Album"/> 
</daml:ObjectProperty> 

…

<daml:DatatypeProperty rdf:ID="year"> 
  <rdfs:comment> 
    year is a DatatypeProperty whose range is xsd: nonNegativeInteger. 
    year is also a UniqueProperty (there is only one year when an album is recorded) 
  </rdfs:comment> 
  <rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/> 
  <rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger"/> 
</daml:DatatypeProperty> 

…

<Musician rdf:ID="Eric Clapton"> 
  <rdfs:label>Eric Clapton</rdfs:label> 
  <rdfs:comment> Eric Clapton is a musician.</rdfs:comment> 
  <name><xsd:string rdf:value="Eric Clapton"/></name> 
  … 
</Musician> 

…

</rdf:RDF> 

Fig. 3-9. An example DAML+OIL ontology – properties and individuals (excerpt) 

DAML+OIL divides the universe into two disjoint parts – the datatype
domain (the values that belong to XML Schema datatypes), and the object
domain (individual objects, considered to be members of classes described 
within DAML+OIL or RDF). Likewise, there are generally two sorts of 
DAML+OIL properties – those that relate objects to other objects 
(specified by daml:ObjectProperty), and those that relate objects to 
datatype values (specified by daml:DatatypeProperty). The syntax for 
classes and properties is similar to that of DAML and OIL (Fig. 3-8 and 3-
9); instances of classes and properties are written in RDF(S) syntax (Fig. 
3-9).
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3.2.4  OWL 

OWL [Smith et al., 2004] is a successor to DAML+OIL (see Fig. 3-10). 
Like its predecessors, the OWL vocabulary includes a set of XML 
elements and attributes, with well-defined meanings. These are used to 
describe domain terms and their relationships in an ontology. In fact, the 
OWL vocabulary is built on top of the RDF(S) vocabulary. Things such as 
Class and subClassOf exist in OWL as well, and so do ObjectProperty,
DatatypeProperty, and many more, as a heritage from DAML+OIL (see 
Fig. 3-11). 

OIL 

DAML 

DAML+OIL OWL Lite 

OWL DL 

OWL Full 

RDF 
Influence

Fig. 3-10. The genesis of OWL 

An important feature of the OWL vocabulary is its extreme richness for 
describing relations among classes, properties, and individuals. For 
example, we can specify in OWL that a property is, Symmetric, the 
InverseOf another one, an equivalentProperty of another one, and Transiti-
ve; that a certain property has some specific cardinality, or minCardinality,
or maxCardinality; and that a class is defined to be an intersectionOf or a 
unionOf some other classes, and that it is a complementOf another class. 
Similarly, a class instance can be the sameIndividualAs another instance, 
or it can be required to be differentFrom some other instance. For example, 
using the equivalentProperty relation, the object properties author and 
artist are specified to be equivalent in Fig. 3-11. Thus, if an instance of 
Album specifies its artist, and an application “knowing” that an album 
must have an author consults the ontology to “understand” what the 
instance is about, it will infer that the artist specified in the instance is 
actually the author of the album. A nice consequence is that reasoning can 
be performed in spite of such terminological differences. 
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<?xml version="1.0"?> 
<rdf:RDF 
    xmlns="http://www.music.org/musicians.owl#" 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xmlns:owl="http://www.w3.org/2002/07/owl#" 
  xml:base="http://www.music.org/musicians.owl"> 
  <owl:Ontology rdf:about="Musician"/> 
  <owl:Class rdf:ID="Musician"/> 
  <owl:Class rdf:ID="musician_Class_13"> 
    <rdfs:subClassOf rdf:resource="#Musician"/> 
  </owl:Class> 
  <owl:Class rdf:ID="Instrument"/> 
  <owl:Class rdf:ID="Album"> 
    <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#title"/> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf>   
    <rdfs:subClassOf> 
      <owl:Restriction> 
        <owl:onProperty rdf:resource="#year"/> 
        <owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality> 
      </owl:Restriction> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:ObjectProperty rdf:ID="author"> 
    <owl:equivalentProperty rdf:resource="#artist"/> 
    <rdfs:domain rdf:resource="#Album"/> 
    <rdfs:range rdf:resource="#Musician"/> 
  </owl:ObjectProperty> 
  <owl:ObjectProperty rdf:about="#artist"> 
    <rdfs:range rdf:resource="#Musician"/> 
    <rdfs:domain rdf:resource="#Album"/> 
  </owl:ObjectProperty> 
  … 

Fig. 3-11. Excerpt from the Musician ontology developed in Protégé 

Another important DAML+OIL heritage is OWL’s layered structure, 
also indicated in Fig. 3-10. In fact, OWL is not a closed language; it is, 
rather, a combination of three increasingly expressive sublanguages 
building on top of each other, designed to suit different communities of 
implementers and users. OWL Lite is intended to support the building of 
simple classification hierarchies and simple constraints. To this end, the 
ability to specify constrains in OWL Lite is rather restricted; for example, 
the only cardinality values permitted in OWL Lite are 0 and 1. OWL DL
reflects the description-logic foundation of its predecessor, DAML+OIL. 
OWL DL provides the maximum expressiveness, but also guarantees that 
all conclusions are computable and will finish in a finite time. It includes 
all OWL language constructs, although it imposes certain restrictions on 
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using them. OWL Full supports users who want maximum expressiveness 
and the syntactic freedom of RDF, but does not guarantee computational 
completeness and decidability. OWL Full can be viewed as an extension of 
RDF, whereas OWL Lite and OWL DL can be viewed as extensions of a 
restricted view of RDF (see [Smith et al., 2004] for details). 

3.2.5 SPARQL 

Unlike OWL and RDF(S), SPARQL is not intended for ontology and 
resource representation, but for querying Web data; precisely, it is a query 
language for RDF [SPARQL, 2005].  

To understand SPARQL, the view of RDF resources as semantic 
networks (set of triplets; see Fig. 3-4) helps. SPARQL can be used to: 

extract information from RDF graphs in the form of URIs, bNodes, and 
plain and typed literals; 
extract RDF subgraphs; 
construct new RDF graphs based on information in queried graphs. 

SPARQL queries match graph patterns against the target graph of the 
query. The patterns are like RDF graphs, but may contain named variables 
in place of some of the nodes (resources) or links/predicates (i.e., 
properties). The simplest graph pattern is like a single RDF triplet 
(resource–property–value triplet, or O–A–V triplet). For example, consider 
the two RDF triplets in Fig. 3-12. Clearly, they both match the simple 
triplet pattern shown in Fig. 3-13. A binding is a mapping from a variable 
in a query to terms. Each triplet in Fig. 3-12 is a pattern solution (a set of 
correct bindings) for the pattern in Fig. 3-13. Query results in SPARQL 
are sets of pattern solutions. The results of the query represented by the 
pattern in Fig. 3-13 are the following pattern solutions: 

album      author
http://www.music.org/albums#EC_Unplugged Eric Clapton 
http://www.music.org/albums#PG_UP  Peter Gabriel 
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http://www.music.org/albums#EC_Unplugged 

music:author 

Eric Clapton 

music:author 

http://www.music.org/albums#PG_UP 

Peter Gabriel 

Fig. 3-12. Simple RDF triplets 

?album 

?author 

music:author 

Fig. 3-13. A simple RDF triplet pattern 

Simple graph patterns can be combined using various operators into 
more complicated graph patterns. For example, the graph in Fig. 3-14 
matches the more complex pattern shown in Fig. 3-15, and the pattern 
solution is 

album http://www.music.org/albums#EC_Unplugged 
ccontent http://www.music.org/contents#Acoustic3 
recording live 

Syntactically, SPARQL queries are of the form presented in Fig. 3-16. 
Obviously, the syntax closely resembles that of database query languages 
such as SQL. The SELECT clause contains variables, beginning with “?” 
or “$”. The WHERE clause contains a pattern. Prefixes are used as an 
abbreviation mechanism for URIs and apply to the whole query. 
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http://www.music.org/albums#EC_Unplugged 

music:recording 

Eric Clapton 

music:author 

http://www.music.org/contents#Acoustic3 

live music:content 

Fig. 3-14. A more complex RDF graph 

?album 

music:recording 

Eric Clapton 

music:author 

?content 

?recording music:content 

Fig. 3-15. A more complex SPARQL pattern 

SELECT ?author 
WHERE { <http://www.music.org/albums#EC_Unplugged> <http://www.music.org/elements/auhor> ?author } 

PREFIX music: <http://www.music.org/elements/> 
SELECT ?author 
WHERE { <http://www.music.org/albums#EC_Unplugged> music:author ?author } 

PREFIX music: <http://www.music.org/elements/> 
PREFIX : <http://www.music.org/albums> 
SELECT $author 
WHERE { :EC_Unplugged  music:author  $author } 

Fig. 3-16. Examples of SPARQL queries 
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3.3 The Role of Ontologies 

Another direct answer to the question “Why ontologies?” put in Chap. 2 is 
“Because they are essential building blocks in the infrastructure of the 
Semantic Web”. Semantic-level interoperation among Web applications is 
possible only if the semantics of Web data is explicitly represented on the 
Web as well, in the form of machine-understandable domain and content 
theories – ontologies. Through automatic use and machine interpretation of 
ontologies, computers themselves can offer enhanced support and 
automation in accessing and processing Web information. This is 
qualitatively different from the established practices of using the Web, in 
terms of extracting and interpreting information – instead of putting the 
main burden on the user, the Semantic Web should do much of that job 
itself [Fensel & Musen, 2001]. 

Ontologies enable access to a huge network of machine-understandable 
and machine-processable human knowledge (Fig. 3-17), encoded in XML-
based formats. Once the essential knowledge of a certain domain has been 
put on the Web in the form of interconnecting ontologies, it creates a solid 
basis for further development of intelligent applications in that domain 
because it alleviates the problem of knowledge acquisition. 

More specifically, ontologies play multiple roles in the architecture of 
the Semantic Web (see Fig. 3-1): 

they enable Web-based knowledge processing, sharing, and reuse 
between applications, by the sharing of common concepts and the 
specialization of the concepts and vocabulary for reuse across multiple 
applications;
they establish further levels of interoperability (semantic 
interoperability) on the Web in terms of mappings between terms within 
the data, which requires content analysis; 
they add a further representation and inference layer on top of the Web's 
current layers; 
they enable intelligent services (information brokers, search agents, 
information filters, intelligent information integration, knowledge 
management, ...; see Sect. 3-5 for details). 

Note, however, that the prerequisites for all of the above roles include 
not only an initial effort by the interested communities to create 
ontologies, but also considerable discipline in annotating the relevant 
applications and Web resources to get them interconnected with the 
ontologies (see Sect. 3-4). Also, supporting tools are needed for those 
millions of developers of Web pages and applications who weave their 
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domain knowledge into the Web daily. Using knowledge representation 
techniques in such tools becomes increasingly important. Last but not 
least, an all-encompassing framework for developing the network of 
ontologies and interconnecting them across domains is also highly 
desirable. Efforts are under way to provide such a framework in the form 
of a standard upper ontology, as discussed in Sect. 2.4.2. 

 ------ 
------ 

 ---- 
------- 

App 2 

 -------- 

 ----- 
-------- 
--- 

App 1 

. . . . . .

O3

Om

On

O4

O2

O1

Fig. 3-17. Interconnecting ontologies and applications on the Semantic Web 

With ontologies, the Semantic Web provides a qualitatively new level of 
service, as it becomes an extremely large system with various specialized 
reasoning services. Ontologies provide an infrastructure for transforming 
the Web of information and data into the Web of knowledge – the 
Semantic Web. 

3.4 Semantic Markup 

Ontologies serve merely to standardize and provide interpretations for 
Web content. To make content machine-understandable, Web resources 
must contain semantic markup, or semantic annotation – descriptions 
which use the terminology that one or more ontologies define [Heflin & 
Hendler, 2001]. Such ontologically annotated Web resources enable 
reasoning about their content and advanced query-answering services. 
They also support ontology creation and maintenance, and help map 
between different ontologies. 

Through the process of semantic markup of Web resources, information 
is added to the resources without changing the originals. The added 
information may serve human users in much the same way as highlighted 
text does in paper-based documents, or, more importantly, may enhance 
the semantic analysis and processing of Web resources by computers. For 
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example, semantic annotation may help intelligent agents discover Web 
resources more easily, or it may indicate that the content of different 
resources is semantically similar. Also, adequate metadata about the 
semantic markup added to a resource might help search engines locate the 
right information. 

There are several levels of sophistication in annotating Web resources 
and making applications use the markup. The simplest approach is to use 
annotation tools to mark up downloaded Web pages manually and save the 
annotation together with the pages locally. Typically, such annotation is in 
the form of highlighted text, new elements inserted into the document, and 
hyperlinks. However, Web servers do not normally allow annotated Web 
resources to be uploaded back. A more sophisticated approach is to save 
the markup in a separate document (locally or on a remote server) and load 
it in a browser along with the document. The next step up in sophistication 
is provided by collaborative Wiki sites that let their users insert and share 
their comments and other annotations along with Web pages. 

None of the above cases has to be supported by explicitly represented 
ontologies. As a consequence, such approaches have been aimed mainly at 
supporting human users. On the other hand, if ontologies are used to drive 
the markup creation, then machine consumers can make use of annotations 
as well. Ontology-based annotation tools enable unstructured and 
semistructured information sources to be linked with ontologies.  

There are numerous approaches to ontology-based markup [Handschuh 
& Staab, 2003a]. As an illustration, consider how semantic markup is done 
according to the CREAM framework [Handschuh & Staab, 2002; 
Handschuh & Staab, 2003b]. This framework is suitable for both 
annotation of existing Web pages and annotation of content while 
authoring a Web page. The key concept in the CREAM framework is 
relational metadata, i.e., metadata that instantiate interrelated definitions 
of classes in a domain ontology. More precisely, for various instantiations 
of classes and properties in an ontology, there may exist several semantic 
relationships; relational metadata are annotations that contain relationship 
instances. The annotations are represented as an XML serialization of RDF 
facts and are attached to HTML pages as in the hypothetical, simplified 
example shown in Fig. 3-18. Assume that a Web page at the hypothetical 
URL http://www.guitar.org/legendaryrecordings contains information 
about the album Unplugged by Eric Clapton, whose homepage is at 
http://www.ericclapton.com/. Assume also that the Musician ontology 
sketched in Fig. 2-2 is implemented in OWL and used to annotate these 
two Web pages. Furthermore, let two namespaces be defined as follows: 



98      3.  The Semantic Web 

xmlns:musician="http://www.music.org/musicians#" 
xmlns:album="http://www.music.org/albums#" 

< musician: Musician 
rdf:ID="urn:rdf:969914d5ca929194ea18787de32c66
5a-1"> 
     … 
     <musician:name>Eric Clapton</musician:name> 
     <musician:records  rdf:resource = 
"http://www.guitar.org/legendaryrecordings/EC#urn:r
df:958804d5ca918084ea17676de21c887a-0"/> 
     … 
</musician:Musician> 

Musician

Album 

Event 

plays 

plays at 

attends

records 

Admirer 

Instrument 

musician:records 

rdf:type
rdf:type 

<album: Album 
rdf:ID="urn:rdf:958804d5ca918084ea17676de21
c887a-0"> 
     … 
     <album:title>Unplugged</album:title> 
     <album:year>1992</album:year> 
     … 
</album:Album> 

Fig. 3-18. A simplified example of the application of the principles of semantic 
annotation in the CREAM framework, after an idea from [Handschuh & Staab, 
2002]; the namespaces and URIs shown are hypothetical 

Obviously, the markup attached to the Web pages uses the terminology 
defined in the ontology. The musician:records part of the markup attached 
to the musician’s home page points to the Web page about the album, thus 
making a semantic connection between the two pages. The annotation 
itself may be created using a user-friendly graphical tool such as Ont-O-
Mat, which is a specific implementation of the CREAM framework that 
Handschuh and Staab used [Handschuh & Staab, 2002; Handschuh & 
Staab, 2003b]. In Ont-O-Mat, an author can design a new Web page or can 
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load and display an existing one to be annotated. In either case, while 
editing the Web page the author can also load an ontology to be used for 
markup, and display its term hierarchies and concept/attribute descriptions 
graphically. By selecting parts of the content of the Web page being edited 
and connecting them with the terms in the ontology by simple mouse 
clicks and drag-and-drop operations, the author can produce the markup 
almost for free – not much additional effort is needed to insert the 
annotations with such a graphical tool. When the author saves the Web 
page at the end of the process, the markup is saved as well. 

The CREAM framework has evolved over the years [Handschuh et al., 
2003a; Handschuh et al., 2003b] to enable querying a Web site 
semantically about the resources it publishes. The resources are typically 
kept in a database on a server, and the site developer may annotate the 
database model (i.e., the entities and their relationships) and publish the 
annotation in RDF. The annotation will describe the structure of all the 
tables involved in a query of the site, thus acting as an API that hides the 
intricacies of access to the database on the server side. A suitable place for 
publishing the annotation is the header part of the site’s main Web page. A 
client may wish to use a specific ontology to put semantic queries to the 
server. To do this, the client must first create rules for mapping between 
the terms in his/her ontology and the terms that are used in the database 
model on the server side and published there as a set of RDF annotations. 
The tool called OntoEdit can be used to create and publish the mapping 
rules. The user (or a third party) can then load both the ontology and the 
mapping rules to query the database, for example through a Web-service 
API.

We can conclude from the above example and from [Heflin & Hendler, 
2001; Hendler, 2001] that in order for annotation of Web pages with 
ontological information to be effective: 

nonexperts in ontological engineering must be able to perform this task, 
starting from existing ontologies, transparently, through normal 
computer use; 
most Web page developers should not need even know that ontologies 
exist, but should still do (almost) free markup; 
ontology-driven authoring tools should support both authoring and 
annotation processes by enabling class hierarchies based on a number of 
underlying ontologies to drive the creation of Web pages;  
the content of the pages being designed and developed should be 
presented, modified, and mixed consistently, using ontologies linked to 
libraries of terms, and interlinked in order to reuse or change terms; 
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tool developers should enable libraries of ontologies to be accessed from 
the tools that they develop, in order to support appropriate markup of 
pages in a wide range of domains. 

3.5 Semantic Web Services 

Roughly speaking, Web services are activities that allow both end users 
and, under appropriate circumstances, software agents to invoke them 
directly [Preece & Decker, 2002]. In the traditional Web model, users 
follow hypertext links manually. In the Web-services model, they invoke 
tasks that facilitate some useful activity (e.g., meaningful content-based 
discovery of resources, fusion of similar content from multiple sites, or 
commercial activities such as course advertising and registration for 
distance learning) [Devedži , 2004b]. 

Technically, Web services are autonomous, platform-independent 
computational elements that can be described, published, discovered, 
orchestrated, and programmed using XML artifacts for the purpose of 
developing massively distributed interoperable applications. The platform-
neutral and self-describing nature of Web services and, particularly, their 
ability to automate collaboration between Web applications make them 
more than just software components. In the service-oriented architecture
[Vinoski, 2002] (Fig. 3-19), Web services advertise themselves in a 
registry, allowing client applications to query the registry for details of the 
service and interact with the service using those details. 

The service-oriented architecture shown in Fig. 3-19 can greatly 
enhance the traditional development process in the case of the 
development of Web applications, since the client-side system can be built 
on the basis of Web services even if those services are not yet available or 
are not known by the developers. This due to the fact that every Web 
service is described through a service description language, dynamically 
discovered by applications that need to use it, and invoked through the 
communication protocol defined in its interface [Vinoski, 2002]. The 
central component in Fig. 3-19 – the service directory – is a dynamically 
organized, but highly structured (e.g., as a tree, or as a table/database) 
information pool pertaining to various services. The underlying 
assumption is that at every point in time the directory lists those services 
that are ready to be invoked by the user; these services are assumed to 
advertise their readiness and availability to the directory. Hence an agent 
can find out about the available services by looking up the directory. Then 
it can decide whether to automatically invoke a suitable service on the 
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user’s behalf, or merely suggest that the user interacts with the service 
directly. 

2. Client looks up service 
details in directory 

1. Service advertises 
itself in directory service. 

Client 
Service 
directory Service 

3. Client interacts with service. 

Fig. 3-19. Service-oriented architecture 

There is a lot of supporting technology for developing, publishing, and 
using Web services, such as WSDL (Web Services Description Language), 
WSFL (Web Services Flow Language), UDDI (Universal Description, 
Discovery, and Integration), and SOAP (Simple Object Access Protocol). 
See [Preece & Decker, 2002] for starting points on the use of these 
technologies.

Note, however, that in the Semantic Web the idea is to employ 
intelligent Web services to go beyond the XML/RDF infrastructure of 
Web pages, i.e., to explore Web services that intelligent-systems 
technology can make possible. Intelligent Web services may turn the Web 
into a collection of different resources, each with a well-defined interface 
for invoking its services [Vinoski, 2002]. In other words, intelligent Web 
services deploy intelligent-systems techniques to perform useful, reusable 
tasks for Web users. This view of Web services implies that the properties, 
capabilities, interfaces, and effects of Web services must be encoded in an 
unambiguous, machine-understandable form, and properly marked up to 
make the services computer-interpretable, with a use that is apparent, and 
agent-ready [McIlraith et al., 2001]. Such requirements, in turn, imply the 
need for ontologies of Web services, to be used as machine-readable 
descriptions of services (as to how they run), including the consequences 
of using those services. Each such ontology should explicitly represent the 
logic of the services and the terms needed to describe the invocation of 
those services. Web service ontologies bring intelligence to Web services, 
as they enable integration of agents and ontologies in some exciting ways. 
For example, an agent performing a keyword-based Web search may 
invoke services such as controlled vocabularies that enable fuzzy-terms-
based searches and inexact matches; if the requested keyword is not in the 
dictionary, the service can come up immediately with a more general 
concept suggested in the ontology. 
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The difference between conventional and intelligent Web services is 
best understood through the pragmatics of their use. In the conventional 
case, the user has to discover the desired service first (using a search 
engine). In most cases, this involves a lot of reading of the Web pages 
discovered. Alternatively, the user may execute a service to see whether it 
satisfies his/her request; this, in turn, means filling in the forms of the 
service manually and composing manually the sequence of services 
required to complete a complex task. 

On the other hand, intelligent Web services enable automatic service 
discovery, using preprovided semantic markup of Web pages and 
ontology-enhanced search engines. Intelligent agents can execute such 
services on behalf of their users automatically, since the semantic markup 
of a service provides a declarative API that tells the agent what input is 
necessary for automatic invocation, what information will be returned, and 
how to execute and, potentially, interact with the service automatically. 
Automatic service composition and interoperation are also provided, since 
the semantic markup of services provides all the necessary information to 
select, compose, and respond to services. The markup is encoded and 
stored at the sites of the services, and appropriate software tools 
manipulate the markup together with specifications of the service task’s 
objectives.

Obviously, the real power of intelligent Web services results not from 
their individual use, but from combining them in a variety of ways [Preece 
& Decker, 2002]. This creates the need for standard models of interaction 
between services [McIlraith et al., 2001]. Such models should be 
implemented as declarative, machine-processable descriptions of how to 
combine intelligent Web services to achieve more sophisticated tasks. The 
descriptions can be encoded in Web service composition languages such as 
WSFL or OWL-S (see below), and contain the knowledge about how to 
perform the sophisticated real-life tasks that the services perform [Preece 
& Decker, 2002]. The point is that implementing these composition 
descriptions on the Web makes them downloadable, understandable, and 
executable for everyone, not only humans but also automated agents. 

Recently, the idea of intelligent Web services has evolved slightly into 
the concept of Semantic Web services [Payne & Lassila, 2004] in the form 
of an augmentation of Web Service descriptions through Semantic Web 
annotation to facilitate higher-level automation of service discovery, 
composition, invocation, and monitoring in an open, unregulated, and 
often chaotic environment (that is, the Web). The objective of Semantic 
Web services is to provide a ubiquitous infrastructure for deploying 
intelligent multiagent systems on the Web. 
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The Semantic Web community has already developed OWL-S, an OWL-
based ontology of Web services and a core set of markup language 
constructs for describing the properties and capabilities of Web services in 
unambiguous, computer-intepretable form [Martin et al., 2004]. OWL-S 
comes with supporting tools and agent technology to enable automation of 
services on the Semantic Web, including automated Web service 
discovery, execution, interoperation, composition, and execution 
monitoring.  

Conceptually, the top level of the OWL-S ontology looks as in Fig. 3-20 
[Martin et al., 2004]. The ServiceProfile describes what a service does. It 
specifies the service’s input and output types, preconditions, and effects. 
The ProcessModel describes how the service works; each service is either 
an AtomicProcess that executes directly, or a CompositeProcess, i.e., a 
composition that combines subprocesses (Fig. 3-21). The ServiceGro-
unding contains the details of how an agent can access the service. This 
grounding specifies a communications protocol, the parameters to be used 
in the protocol, and the serialization techniques to be employed for 
communication. Such a rich description of services greatly supports 
automation of their discovery and composition. 

Service 

ServiceProfile ServiceGrounding 

ServiceModel 

Fig. 3-20. Top level of the OWL-S ontology (after [Martin et al., 2004]) 

<owl:Class rdf:ID="CompositeProcess"> 
    <rdfs:subClassOf rdf:resource="#Process"/> 
    <owl:disjointWith rdf:resource="#AtomicProcess"/> 
    <owl:disjointWith rdf:resource="#SimpleProcess"/> 
    <rdfs:comment> 
        A CompositeProcess must have exactly 1 composedOf property. 
    </rdfs:comment> 
    <owl:intersectionOf rdf:parseType="Collection"> 
          <owl:Class rdf:about="#Process"/> 
          <owl:Restriction> 
               <owl:onProperty rdf:resource="#composedOf"/> 
               <owl:cardinality rdf:datatype="&xsd;#nonNegativeInteger"> 
                        1</owl:cardinality> 
          </owl:Restriction> 
    </owl:intersectionOf> 
</owl:Class> 

Fig. 3-21. An excerpt from the OWL-S ontology defined in [Martin et al., 2004] 



104      3.  The Semantic Web 

OWL-S service descriptions are structured as OWL documents, so 
developers can build them using all of OWL’s domain-modeling features, 
as well as concepts from other ontologies [Sirin et al., 2004]. Also, some 
aspects of the derivation of OWL-S descriptions directly from WSDL 
descriptions can be partially automated. 

The tricky part in building Semantic Web service descriptions using 
OWL-S is combining different services from different providers – these 
services might assume different ontologies [Payne & Lassila, 2004]. Thus 
mapping of concepts between different ontologies and composition of new 
concepts from multiple ontologies is necessary. One way around this 
problem is to have agents and service requesters translate service 
descriptions into a familiar ontology to formulate valid requests. This 
translation can be done by employing a set of “bridging axioms”. Sirin et 
al. have proposed an alternative approach – generating service 
compositions that satisfy users’ requirements through an interactive 
metaphor [Sirin et al., 2004]. This approach assumes knowledge-based 
indexing and retrieval of services by both agent brokers and humans, as 
well as automated reasoning about the services, but is essentially 
semiautomated, since the user is involved in the composition of the 
services as well. Nevertheless, the supporting tool that Sirin et al. have 
developed uses contextual information to locate semantically interoperable 
services that it can present to the user at each stage of the composition 
framework. Built on top of OWL-S, the tool enables semantic discovery 
and filtering to determine a meaningful set of candidate services on the 
basis of advertised Semantic Web service descriptions. The user’s 
involvement here is reduced to a necessary minimum – it is the user who 
has the final word about selecting a particular service (for the next step in 
composition) after the automatic filtering of candidate services. The next 
step in automation might be creating an intelligent agent to do this 
selection on behalf of the user. However, owing to the huge variety of 
possible services, and of the respective domain ontologies and their 
representations, as well as varioations in the composition, such an agent 
(or even a multiagent system) may not be easy to build. 

3.6 Open Issues 

While the Semantic Web is certainly gaining momentum, it is important to 
realize that some still unresolved problems and factors hold back its more 
rapid development. Critics of the Semantic Web frequently complain that 
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there is no “killer app” for the Semantic Web yet, which they interpret as a 
sign of a poorly grounded field and poorly envisioned future development. 

In spite of the fast-growing representational and technological support, 
development of ontologies is still hard work. Tools such as Protégé are 
easy to use, but, nevertheless, someone always has to transfer human 
knowledge about a topic or subject to the ontological representation. Given 
that a domain ontology is supposed to represent the essential concepts in a 
domain and their relationships, the process always requires knowledge 
acquisition in which human experts are involved to a large extent. Building 
and representing ontologies in computers is not so much a technical matter 
as a matter of obtaining and organizing high-quality human knowledge 
about the domain of interest. True, partial automation of this process is 
possible by applying machine learning techniques, but such approaches are 
largely still under development. 

Moreover, domain knowledge is seldom static – it evolves over time, 
much information that was once relevant may easily become obsolete, and 
new, important information may be discovered after the ontology has been 
built and represented on the Web explicitly. That raises the important issue 
of knowledge maintenance. 

As already mentioned in Sect. 2.1, the term “ontology” is sometimes 
used to refer to a body of knowledge describing a domain, typically a 
domain of commonsense knowledge, using a representation vocabulary 
[Chandrasekaran et al., 1999]. However, commonsense ontologies are still 
not widely available, and efforts to create a standard upper ontology are 
still under way (see Sect. 2.4.2). The Austin-based company Cycorp has 
devoted many years to creating CYC, a huge ontology of commonsense 
knowledge that has been used in a wide range of applications [Lenat & 
Guha, 1990; Lenat, 1995]. The CYC ontology is extremely impressive, but 
Cycorp retains proprietary rights to the vast bulk of it and has released 
only a small part of it (called OpenCYC) to the public [Niles & Pease, 
2001; SUO WG, 2005]. The contents of CYC have not been subject to 
extensive peer review, and thus using it as a standard would be 
problematic. 

On the other hand, Cycorp’s philosophy is grounded in the fact that 
spontaneous development of domain-specific ontologies for the Semantic 
Web may lead to a Web rich in semantics, but poor in ontological 
consistency. Interrelating many heterogeneous ontologies in a useful way 
is anything but easy if they are richly specified (which takes a lot of effort 
in itself). However, if developers were to create a number of lightweight 
ontologies just to get started, they might want to use CYC to elaborate 
their ontologies, by using it to describe more precisely the intended 
meanings of the terms they have used. In this case, CYC could serve as a 
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global point of integration for many domain-specific ontologies through a 
large corpus of encoded commonsense knowledge. 

Automation is a key issue for many aspects of the Semantic Web, 
including annotation/markup. In practice, much of the semantic markup of 
Web resources has been done more or less manually. This is not only time-
consuming and error-prone – it is tedious. Moreover, any markup is good 
only as long as the resource remains unchanged; what if the resource is 
modified and the markup is no longer valid? Note that creating semantic 
markup will be one of the key factors for the success of the Semantic Web, 
but it is certainly not the ultimate goal. It is therefore necessary to enable 
easy annotation and automate the process as much as possible, as well as 
to achieve effortless updating of markup in the ever-changing environment 
of the Web. Automated annotation is a hot research topic, and there are 
several approaches. 

Some also argue that the success of the Semantic Web will depend 
largely on the integration of Semantic Web technology with commercial 
software products. A good example of technology designed for this 
purpose is Briefing Associate [Tallis et al., 2002], discussed in Sect. 2.3. 
Its integration with MS PowerPoint, a tool used very widely for creating 
presentations, indicates a way to achieve the mass annotation of certain 
categories of documents without the authors having to care about it. 
Efforts are underway to enable such “semantic markup as a side effect” for 
different categories of Web resources, as well as to provide multiple 
annotations of the same resource to facilitate its reuse by multiple 
applications.

Semantic Web services represent an important step toward the full-
blown vision of the Semantic Web, in terms of utilizing, managing, and 
creating semantic markup [Payne & Lassila, 2004]. Note that Semantic 
Web services nicely complement ontologies – services tackle behavioral 
issues of the Semantic Web (e.g., interactions between intelligent agents), 
whereas ontologies implement the Semantic Web’s original objective of 
creating representational and logical frameworks to allow increasing 
automation in processing Web-based information and in improving the 
interoperability of Web-based applications. 

Still, as Preece and Decker carefully note [Preece & Decker, 2002], 
there is a trade-off between the functionality of Semantic Web services and 
the cost of developing the underlying markup and computational 
processes. The greater the functionality, the greater the cost. A more 
detailed study of the real needs of users may indicate a way to reduce this 
trade-off. This issue is closely related to another one – the trust that users 
will put in automated Semantic Web services. As Semantic Web services 
become more common, users will want to know about their quality before 



3.7  Quotations      107 

they delegate their hands-on browsing to hands-off “black box” services. 
This creates a need for a set of objective and subjective metrics for the 
quality of Semantic Web services, such as how well the service has 
“understood” the user’s needs, how good it was in fulfilling those needs, 
and how accurate and complete the result was. 

3.7 Quotations 

The Semantic Web is a universal space for anything which can be 
expressed in classical logic. In the world of knowledge representation 
there are many different systems, and the following is an attempt to 
generalize. ... Exposing rules as classic logic facts strips the 
(pragmatically useful) hint information which controls the actual 
sequence of operation of a local inference engine. When the facts 
corresponding to all the rules of all the inference engines are put onto 
the Web, then the great thing is that all the knowledge is represented in 
the same space. The drawback is that there is no one inference engine 
which can answer arbitrary queries. But that is not a design goal of the 
Semantic Web. The goal is to unify everything which can be expressed 
in classical logic (including more mathematics when we get to it) 
without further constraint. We must be able to describe the world, and 
our hopes and needs and terms and conditions. A system which tries to 
constrain the expressive power cannot be universal. ... The choice of 
classical logic for the Semantic Web is not an arbitrary choice among 
equals. Classical logic is the only way that inference can scale across 
the Web. [Berners-Lee, 1997–2004] 

Instead of trying to rebuild some aspects of a human brain, we are 
going to build a brain of and for humankind. [Fensel & Musen, 2001] 



4. The Model Driven Architecture (MDA) 

A relevant initiative from the software engineering community called 
Model Driven Development (MDD) is being developed in parallel with the 
Semantic Web [Mellor et al., 2003a]. The MDD approach to software 
development suggests that one should first develop a model of the system 
under study, which is then transformed into the real thing (i.e., an 
executable software entity). The most important research initiative in this 
area is the Model Driven Architecture (MDA), which is being developed 
under the umbrella of the Object Management Group (OMG). This chapter 
describes the basic concepts of this software engineering effort.  

4.1 Models and Metamodels 

Models play a major role in the MDA. The most general definition says 
that a model is a simplified view of reality [Selic, 2003], or, more 
formally, a model is a set of statements a system under study [Seidewitz, 
2003]. In fact, one can say that a model is a clear set of formal elements 
that describes something being developed for a specific purpose and can be 
analyzed using various methods [Mellor et al., 2003a]. In addition to what 
is specified by the definition of a model, an engineering model must 
possess, to a sufficient degree, the following five key characteristics [Selic, 
2003]: 

Abstraction. A model is always a reduced rendering of the system that it 
represents.
Understandability. It is not sufficient just to abstract away detail; we 
must also present what remains in a form (e.g., a notation) that most 
directly appeals to our intuition. 
Accuracy. A model must provide a true-to-life representation of the 
modeled system’s features of interest.
Predictiveness. We should be able to use a model to correctly predict 
the modeled system’s interesting but nonobvious properties, either 
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through experimentation (such as by executing a model on a computer) 
or through some type of formal analysis. 
Inexpensiveness. A model must be significantly cheaper to construct and 
analyze than the modeled system. 

Metamodels are another key concept used in the MDA. A metamodel is 
a specification model for a class of systems under study, where each 
system under study in the class is itself a valid model expressed in a 
certain modeling language. A metamodel makes statements about what can 
be expressed (i.e., asserted) in the valid models of a certain modeling 
language. In fact, a metamodel is a model of a modeling language 
[Seidewitz, 2003]. The UML diagram shown in Fig. 4-1 represents the 
relations between a system under study and a model expressed in a specific 
modeling language. Since a metamodel itself is a model, it can be 
represented in a modeling language. In some modeling architectures, such 
as the MDA, there is a specialized modeling language for defining 
metamodels, and that language is defined in the metametamodeling layer  
of a specific modeling architecture. In the case of the MDA, this modeling 
language is called the Meta-Object Facility (MOF); this is described in 
more detail later in this chapter. 

ModelSystem
represents

Metamodel
terminology
assertions

Fig. 4-1. The correspondence between a model and a system 

4.2 Platform-Independent Models 

Ideally, developers should see an information system as an independent
world during its development, without any artificial constraints such as the 
operating system, hardware, network performance, or application 
incompatibility.  
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One possible solution that can enable such an approach is to execute 
every information system on the same hardware platform, operating 
system, architecture, etc. Even though this may not sound very realistic, 
one may notice that this approach is being already applied to the Windows 
operating system and other related software technologies by the company 
that produces them. However, even if all of the components were to be 
under the same development control, the field of information systems is so 
heterogeneous and prone to so many revisions that the constant need for 
improved versions of software would cause this approach to collapse.  

Since there have already been many different platforms and too many 
conflicting requirements, it is very hard for developers to agree to one 
common solution. Accordingly, a more realistic scenario is to enable 
coexistence of the present systems by representing them by models and by 
transforming models into other models. The MDA indeed attempts to 
provide a solution to the problem of such an integration. Although the 
OMG’s architectural framework is constantly being changed, the primary 
goals of achieving both interoperability and portability are still unchanged. 

The MDA defines three viewpoints (levels of abstraction) for analyzing 
systems. Given a viewpoint, we can define a representation of a system 
under study, that is to say, a model of the system seen from that viewpoint. 
In fact, for each viewpoint there is a corresponding model, namely 

the computational-independent model (CIM); 
the platform-independent model (PIM); 
the platform-specific model (PSM). 

The CIM does not show details of the structure of the system. In 
software engineering, it is well-known as a domain model specified by 
domain experts. This is very similar to the concept of an ontology.

The PIM is a computation-dependent model, but it does not consider the 
characteristics of specific computer platforms. In other words, the PIM is a 
model assumed to be executed on a technologically independent virtual 
machine.

The PSM finalizes the specification of a whole computer system. The 
main goal is to shift developers’ focus from the PSM to both the PIM and 
the CIM. In this way, platform-specific details should be generated using 
various tools for automatic generation of those details (e.g., code). These 
tools should transform the PIM into the PSM (see Fig. 4-2). More details 
of these abstraction levels and their corresponding models can be found in 
[Frankel, 2003; Kleppe et al., 2003; Mellor et al., 2003b]. 
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Fig. 4-2. Transforming a platform-independent model (PIM) into platform a 
specific-model (PSM) using transformation tools 

4.3 Four-Layer Architecture 

The MDA is based on a four-layer metamodeling architecture and a few 
complementary standards (see Fig. 4-3): 

the Meta-Object Facility (MOF); 
the Unified Modeling Language (UML); 
the XML Metadata Interchange (XMI). 

Fig. 4-3. The four-layer Model Driven Architecture and its orthogonal instance-of 
relations: linguistic and ontological 
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The topmost level of this architecture is the metametamodel, that is to 
say, the MOF. It is an abstract, self-defined language and framework for 
specifying, constructing, and managing technologically independent 
metamodels. It is a basis for defining any modeling language, such as 
UML or the MOF itself. The MOF also defines a backbone for the 
implementation of a metadata (i.e., model) repository described by 
metamodels [OMG MOF, 2002; OMG MOF2, 2003]. The rationale for 
having these four levels with one common metametamodel is to enable 
both the use and the generic managing of many models and metamodels, 
and to support their extensibility and integration.  

All metamodels, standard and custom (user-defined), that are defined in 
the MOF are placed in the M2 MDA level. One of these metamodels is 
UML, which stands as a language for specifying, visualizing, and 
documenting software systems. The basic concepts of UML (e.g., Class 
and Association) can be extended in UML profiles in order to adapt UML 
to specific needs. Models of the real world, which are represented by 
concepts from a metamodel belonging to the M2 level, are in the M1 level 
of the MDA four-level architecture. In the M0 level, are things from the 
real world that are modeled in the M1 level. For example, the MOF Class 
concept (from the M3 level) can be used for defining the UML Class 
concept (M2), which, in turn, defines the Person concept (M1). The Person 
concept is an abstraction of the real thing person. We provide a more 
detailed discussion of modeling architectures and their mutual relations in 
the next chapter. 

The bottommost layer is the instance layer (M0). There are two different 
approaches to describing this layer: 

1. The instance layer contains instances of the concepts defined in the 
model layer (M1), for example, objects in programming languages. 

2. The instance layer contains things from our reality, both concrete (e.g., 
Mark is an instance of the class Person, and Lassie is an instance of the 
class Dog) and abstract (e.g., UML classes – Dog, Person, etc.) 
[Atkinson & Kühne, 2003]. 

In this book, we advocate the second approach, but we need to give 
more detail about its impact on UML. In UML, both classes and objects 
are in the same layer (the model layer) in the MDA four-layer architecture. 
The MDA layers are called linguistic layers. On the other hand, concepts 
from the same linguistic layer can be in different ontological layers. 
Hence, UML classes and objects are in different ontological layers, but in 
the same linguistic layer. 
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In addition to the aforementioned standards, the MDA is based on XMI, 
a standard that defines mappings of MDA-based metametamodels, 
metamodels, and models onto XML documents and XML schemas. Since 
XML is widely supported by many software tools, it empowers XMI to 
enable better exchange of metametamodels, models, and models.  

4.4 The Meta-Object Facility 

The Meta-Object Facility (MOF) [OMG MOF2, 2003] originated as an 
adaptation of the UML core, which had already gained popularity among 
software modelers, to the needs of the MDA. The MOF is, essentially, a 
minimal set of concepts which can be used to define other modeling 
languages. It is similar (but not identical) to the part of UML which is used 
in the modeling of structure. In the latest version (2.0), the concepts of the 
MOF and of the UML superstructure, are derived from the concepts of the 
UML infrastructure. 

Essentially, there is an OMG standard called the UML infrastructure 
[OMG UML, 2003a], which contains basic concepts that are intended to be 
used in other metamodels. Figure 4-4 shows the dependency of some 
widely used metamodels based on the UML core package. 

Fig. 4-4. The UML core package considered as a mutual kernel 

The UML core package precisely defines the basic concepts that are 
frequently used in modeling. A notable difference with respect to the older 
version is that every concept in the new version is narrowly focused on 
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some small aspect. This enables these conceptes to be easily combined in 
various metamodels, avoiding usage of those aspects that are not required. 

In version 2.0 of the MOF standard, there are two metametamodels to 
choose from: 

Essential MOF (EMOF); 
Complete MOF (CMOF). 

EMOF is a compromise that favors simplicity of implementation over 
expressiveness, while CMOF is more expressive, but more complicated 
and harder to implement. Figure 4-5 shows EMOF and CMOF and their 
dependencies.

Fig. 4-5. EMOF and CMOF and their dependencies 

From Fig. 4-5, we can see that EMOF is derived mostly from the Basic 
package of the UML infrastructure, whereas CMOF expands EMOF using 
concepts from the Constructs package (which is a part of the UML 
infrastructure).

Basically, the four main modeling concepts in the MOF are: 

Class – this models MOF metaobjects, concepts which are entities in 
metamodels (i.e. UML Class, Attribute and Association, ODM Class, 
Property, etc., and even MOF concepts such as Class or Property); 
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Association – this models binary relationships (UML or MOF 
superclasses and types or ODM superproperties, for example); 
DataType – this models primitive types (String, Integer, etc.); 
Package – this modularizes other concepts; for example, it groups 
similar concepts. 

Of course, there are many more such concepts, but these are the most 
important and most frequently used. For details, see the MOF specification 
[OMG MOF2, 2003]. Figure 4-6 should give a feeling of what some 
metamodels look like. It shows part of the MOF definition of a metamodel. 

Fig. 4-6. The definition of part of a metamodel (in this case, EMOF is defined 
within itself) 

Do not be confused by the fact that MOF Class is defined using MOF 
Class. This is like defining words in a dictionary: one word is defined by 
some other words, but all words are defined by words from the same 
dictionary. For example, the definition of “or” in a dictionary may include 
the following statement: “restating or clarifying the first item mentioned.” 
So, the definition of “or” includes the word that it defines! Regarding other 
metamodels defined in EMOF, there is a part of the UML infrastructure 
that defines the UML Class concept, and that diagram is very similar to the 
diagram shown in Fig. 4-6. In this book, you will find a large part of the 
definition of the Ontology Definition Metamodel – it is defined in EMOF. 
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4.5 Specific MDA Metamodels 

In order to illustrate the use of the MOF language, this section describes 
three well-known MOF-defined metamodels defined in the OMG 
specifications.

4.5.1  Unified Modeling Language 

The Unified Modeling Language (UML) is a language for specifying, 
visualizing, and documenting software systems, as well as for modeling 
business and other nonsoftware systems. UML is a result of the best 
practice in engineering modeling and has been successfully proven in 
modeling many big and complex systems.  

As we have already mentioned, the UML core is the same as that of the 
MOF. Accordingly, we shell not discuss its elements; a comprehensive 
overview can be found in the UML language specification [OMG UML, 
2003a]. UML is often identified as a graphical notation, which was true for 
its initial versions. Recently, UML has been recognized more as a 
language independent of any graphical notation rather than as a graphical 
notation itself.  

However, UML is also very important as a language for the graphical 
representation of models of software systems. The point of view from 
which a problem under study determines crucially which elements of that 
problem will be stressed in the final model. UML has features for 
emphasizing specific views of a model by using graphical representations 
of models, namely UML diagrams. In this way, we can abstract models; 
we may otherwise not be able to analyze and solve complex systems. UML 
defines the following diagrams for various views of models: 

Use Case Diagram 
Class Diagram 
Behavior Diagrams 
- Statechart Diagram 
- Activity Diagram 
Interaction Diagrams: 
- Sequence Diagram 
- Collaboration Diagram 
Implementation Diagrams: 
- Component Diagram 
- Deployment Diagram 
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These diagrams provide developers with various perspectives of the 
system under study or development. A model which captures a whole 
system and is graphically represented by diagrams just integrates all these 
perspectives into one common entity, comprising the union of all modeled 
details of that system.  

Probably, the best overview of the use of the UML language is given in 
[Fowler, 2003]; more details about the language itself can be found in 
[Booch et al., 1998; Rumbaugh et al., 2004]. 

4.5.2  Common Warehouse Metamodel (CWM) 

The great complexity and diversity of the fields described by metamodels 
means that many different metamodels are constantly evolveding. Even 
when those metamodels are based on the same metametamodel, their 
interoperation requires a number of bridges (e.g. transformations). This 
problem is emphasized in the field of data warehouse, where one aims to 
manipulate and integrate data based on a large number of different 
metamodels.

Fig. 4-7. The structure of Common Warehouse Metamodel (CWM) 

Common Warehouse Metamodel (CWM) is an OMG open industrial 
standard for integrating tools for data warehouse and business analysis. It 
is based on using common metadata [Poole, 2002]. CWM is an example of 
an approach to model-based metadata integration. It is not one monolithic 
metamodel, but actually comprises many different but related models. 
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Each model is an information subdomain in a business chain. Figure 4-7 
shows a block diagram of the organization of CWM, namely the 
metamodels contained in CWM.  

CWM comprises several metamodels organized into the following 
layers: Object Model, Foundation, Resource, Analysis, and Management. 
Metamodels located in the higher layers rely on metamodels from the 
lower layers. The basic layer (Object Model) is based on UML, which is 
actually a superset of it. In Fig. 4-7, we have emphasized metamodels that 
are more relevant for designing metamodels of intelligent information 
systems, even though it is not very sensible to exclude any metamodel a 
priori. For example, the Data Mining metamodel belongs to the group of 
metamodels of intelligent information systems. 

CWM may have a big influence on the integration of metamodels for 
intelligent information systems. It can be used as either an extensible basis 
or a template for building new metamodels. 

4.5.3  Ontology Definition Metamodel 

The MDA and its four-layer architecture provide a solid basis for defining 
the metamodels of any modeling language, and thus a language for 
modeling ontologies based on the MOF. Such a language can employ 
MDA tool support for modeling, model management, and interoperability 
with other MOF-based metamodels. The current software tools do not 
implement many of the fundamental MDA concepts. However, we can 
expect that most of these tools, which are presently oriented towards UML 
and the modeling layer (M1), will be improved and equipped with MDA 
support in the coming years. 

Currently, there is an RFP (Request for Proposal) within the OMG that 
is aimed at defining a suitable language for modeling Semantic Web 
ontology languages in the context of the MDA [OMG ODM RFP, 2003]. 
The proposal is a result of an extensive previous research in the fields of 
the MDA and ontologies [Baclawski et al., 2002a; Baclawski et al., 2002b; 
Brockmans et al., 2004; Cranefield, 2001a; Djuri  et al., 2005a; Falkovych 
et al., 2003; Kendall et al., 2002]. This proposal prescribes the most 
important components that should be included in the final OMG 
specification, namely: 

the Ontology Definition Metamodel (ODM); 
the Ontology UML Profile – a UML profile that supports UML notation 
for ontology definition; 
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two-way mappings between OWL and ODM, between ODM and other 
metamodels, between ODM and the Ontology UML Profile, and 
between the Ontology UML Profile and other UML profiles [Gaševi  et 
al., 2004a]. 

At the time of writing this book, ODM and the Ontology UML Profile 
are still in the early stages of their specification. Initially, there were four 
submissions to the OMG ODM RFP, which have been joined into a 
common specification proposal. However, the final specification has not 
yet been adopted. One of the main reasons is that the UML 2.0 and MOF 
2.0 specifications have not been adopted at the time of writing (late 2005), 
even though they have been completely defined. Since the main purpose of 
this book is to reflect the use of MDA technologies for developing 
ontologies, this OMG initiative is described in detail later in the book. 

4.6 UML Profiles  

The UML profile is a concept used for adapting the basic UML constructs 
to a specific purpose. Essentially, this means introducing new kinds of 
modeling elements by extending the basic ones, and adding them to the 
modeler’s repertoire of tools. In addition, free-form information can be 
attached to the new modeling elements. 

The basic UML constructs (model elements) can be customized and 
extended with new semantics by using four UML extension mechanisms 
defined in the UML specification [OMG UML, 2003b]: stereotypes, tag 
definitions, tagged values, and constraints.  

Stereotypes enable one to define virtual subclasses of UML metaclasses, 
by assigning them additional semantics. For example, we may want to 
define the «OntClass» stereotype (see Fig. 4-8) by extending the UML 
Class «metaclass» to denote modeling element used to represent 
ontological classes (and not other kinds of concepts).  

Tag definitions can be attached to model elements. They allow one to 
introduce new kinds of properties that the model elements may have, and 
are analogous to meta-attribute definitions. Each tag definition specifies 
the actual values of the properties of individual model elements; these 
values are called tagged values. Tag definitions can be attached to a 
stereotype to define its virtual meta-attributes. For example, the 
«OntClass» stereotype in Fig. 4-8 has a tag definition specifying four 
tagged values (for enumeration, intersection, etc.). 
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Fig. 4-8. A definition of a new stereotype

Constraints make it possible additionally to refine the semantics of the 
modeling element that they are attached to. They can be attached to a 
stereotype using OCL (Object Constraint Language) or the English 
language (i.e., spoken language) in order to precisely define the 
stereotype’s semantics (see the example in Fig. 4-8). More details of UML 
extension mechanisms can be found in [OMG UML, 2003b; Rumbaugh et 
al., 1998].  

A coherent set of extensions of the basic UML model elements, defined 
for specific purposes or for a specific modeling domain, constitutes a UML 
profile. A UML profile definition in the context of the MDA four-layer 
metamodeling architecture means extending UML at the level of the 
metamodel layer (M2). One can understand such extensions as a new 
language, but can also understand UML as a family of languages [Duddy, 
2002]. Each of these languages uses the UML notation, with the four UML 
extension mechanisms. The recent UML specifications enable graphical 
notation to be used for specifying stereotypes and tagged definitions 
[Kobryn, 2001]. Thus, all of the stereotypes and tagged values used in this 
chapter have been defined in this way. 

4.6.1  Examples of UML Profiles 

Many important UML profiles have now been developed. Some UML 
profiles have been adopted by the OMG, such as the UML Profile for 
CORBA [OMG CORBA, 2002] and the UML Profile for Enterprise 
Application Integration [OMG EAI, 2004]. Besides these formal 
specifications, several well-known UML profiles have been widely 
accepted by software engineers. One of the most popular ones is the UML 
profile for building Web applications developed by Jim Conallen 
[Conallen, 2002]. Recognizing the lack of UML primitives for modeling 
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Web applications (e.g., links, Web forms, and Web pages), Conallen 
extended some UML model elements (e.g., Class and Attribute) with 
primitives relevant to Web applications (e.g., server page, client page, and 
form). Figure 4-9 shows a UML diagram of a Web application modeled 
using Conallen’s UML profile. The diagram contains UML representations 
of server pages (e.g., spUnbounded), a form, and buttons on the form (e.g., 
Simulate). This example shows the feature of UML whereby one can 
develop a specific icon for each primitive developed in a UML profile. In 
Fig. 4-9 we have used the graphical features of the Rational Rose UML 
tool for modeling Web applications using this UML profile. Of course, the 
use and definition of graphical icons is optional. In fact, the same semantic 
meaning of an extended UML model element (e.g., Class) would be 
obtained if we used a graphical representation of standard model elements 
together with the standard way of representing stereotypes (e.g., the 
Simulate button in the “form” class). 

spNetBspBounded

form
<<button>> Simulate

<<button>> Initial Marking
<<button>> SaveAs

spNetUspUnbounded

Fig. 4-9. UML diagram of a Web application modeled using a UML profile for 
modeling Web applications 

Another important UML profile is that for modeling XML Schema 
developed by David Carlson [Carlson, 2001]. Understanding the needs of 
developers of business applications to use a rich set of XML Schema 
features, Carlson found that the resulting schemas were difficult to share 
with wider audiences of users and business partners. In fact, other forms of 
representation and presentation of models are more effective than XML 
Schema when specifying new vocabularies or sharing definitions with 
users. Carlson proposed the use of UML as a standard for system 
specification and design. Figure 4-10 shows the Musician ontology 
represented in Carlson’s UML profile for modeling XML Schema. It is 
important to note that each class and attribute has a corresponding 
stereotype (i.e., XSDcomplexType and XSDattribute). In this way, one can 
map this model onto an XML Schema definition using tools (e.g., an 
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XSLT that transforms an XMI representation of a UML model into an 
XML Schema definition). Besides the stereotypes shown in Fig. 4-10, the 
UML Profile contains all other primitives required for defining XML 
Schemas. 

Instrument
<<XSDattribute>> name
<<XSDattribute>> weight
<<XSDattribute>> loudness

<<XSDcomplexType>>
Album

<<XSDattribute>> title
<<XSDattribute>> year
<<XSDattribute>> duration

<<XSDcomplexType>>

Musician
<<XSDattribute>> name

<<XSDcomplexType>>

0..n

0..n

0..n

+player

0..n
plays

0..n

0..n

+opus

0..n

+author
0..n records

Event
<<XSDattribute>> date
<<XSDattribute>> time
<<XSDattribute>> location

<<XSDcomplexType>>

0..n

0..n

+performance
0..n

+performer

0..n

plays at

Admirer
<<XSDcomplexType>>

0..n0..n

+performance

0..n
+audience
0..n

attends

Fig. 4-10. A UML diagram of the Musician ontology, represented with the UML 
profile for modeling XML Schema 

Note, finally, that there are many other important UML profiles apart 
from the ones thatwe have illustrated in this book. Some examples are the 
UML profile for database design [Naiburg & Maksimchuk, 2001] and the 
UML profile for framework architectures. Taking into account the fact that 
the main goal of this book is to illustrate the use of MDA standards for 
developing ontologies, we shell explain the Ontology UML Profile in 
detail.

4.7 An XML for Sharing MDA Artifacts 

XML Metadata Interchange (XMI) is an XML-based standard for sharing 
MDA metadata [OMG XMI, 2002]. Although this standard sounds as if it 
ought to be very well-known, most practitioners are confused by this term. 
We shell try to explain XMI using Fig. 4-11. The confusion comes from 
the presence of several different XML schemas, and all of them are called 
XMI. We usually encounter two kinds of XMI documents, or, more 
precisely, the two XML schemas defining XMI: 

the XML schema for MOF metamodels; 
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the XML schema for UML models. 

The first of these defines the syntax for sharing both MOF-based 
metamodels and the definition of the MOF itself. So, we use one schema in 
two different MDA layers, M3 and M2, for sharing both metametamodels 
and metamodels. For instance, the MOF is defined by itself, so we use the 
MOF XML schema to describe the XMI document comprising the MOF 
specification, and this document is also a part of the MOF standard.

Similarly, there is the document that describes the XMI standard 
containing the UML metamodel. However, UML is a modeling language 
that developers use for various different models. It is obvious that here is a 
need for an XML schema for exchanging UML models. In fact, there the 
standardized one called the UML XMI Schema. UML tools such as 
IBM/Rational Rose, Poseidon for UML, and Together support this schema, 
but some researchers report that we always lose some information when 
sharing UML models between two UML tools [Uhl & Ambler, 2003].  

Furthermore, it is well-known to developers that we never employ the 
UML XML Schema as an XML language in domain applications. We 
always define a domain XML language, i.e., a domain XML schema. 
Accordingly, there is a set of rules for mapping UML models into XML 
schemas [Grose et al., 2002]. Thus, one can generate an XML schema for 
any UML model, while instances of models (i.e., objects) are shared in 
accordance with those schemas. In view of the presumption that both UML 
objects and UML classes are in the same MDA layer (the M1 layer), we 
regard the generated XML schemas and their instance XML documents as 
being placed in the M1 layer. 

Fig. 4-11. Mapping MDA metametamodels, metamodels, and models to XMI 
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Since we have a set of rules for generating XML schemas from UML 
models, we can apply the same principle to the upper MDA layers (M2 
and M3), and so we can produce an XML schema for each MOF-based 
metamodel. Using that principle, we have generated XML schemas for 
various metamodels (e.g., ODM [Djuri  et al., 2005a]). For example, the 
developers of Protégé have produced an XML schema for a MOF-
compatible metamodel of the Protégé ontology editor [Protégé, 2005].  

Summarizing the story about XMI, we can say that XMI is: 

a set of rules for serialization of object; 
a set of rules for generation of schema. 

Accordingly, the OMG has specified several documents related to XMI:  
the XML schema for MOF metamodels; 
the XMI document for the MOF metamodel; 
the XMI document for the UML metamodel; and 
the XMI schema for UML models. 

In order to illustrate the aforementioned XMI documents and schemas, 
we show in Fig. 4-12 an excerpt from an XMI document representing the 
Musician UML class defined in the previous chapters. The document 
shown has been written in accordance with the standardized XMI schema 
for UML models. This document is at the bottommost level (M1) in Fig. 4-
11, and is an instance of the XML schema defined at level M2 in Fig. 4-11.  

<UML:Class xmi.id="Im19247250m106c9d71d66m24d0" name="Musician"  
visibility="public" isSpecification="false" isRoot="true" isLeaf="true" isAbstract="false" isActive="false"> 

 <UML:Classifier.feature> 
  <UML:Attribute xmi.id="Im19247250m106c9d71d66m24d1"  
  name="name" visibility="private" isSpecification="false"  
  ownerScope="instance" changeability="changeable"  
  targetScope="instance"> 
   <UML:StructuralFeature.multiplicity> 
    <UML:Multiplicity xmi.id="Im19247250m106c9d71d66m250c"> 
     <UML:Multiplicity.range> 
      <UML:MultiplicityRange xmi.id="Im19247250m106c9d71d66m250d" lower="1" upper="1"/> 
     </UML:Multiplicity.range> 
    </UML:Multiplicity> 
   </UML:StructuralFeature.multiplicity> 
   <!--... -->
   <UML:Attribute.initialValue> 
    <UML:Expression xmi.id="Im19247250m106c9d71d66m24d2" language="java" body=""/> 
   </UML:Attribute.initialValue> 
   <UML:StructuralFeature.type> 
    <UML:DataType xmi.idref="Im19247250m106c9d71d66m24d3"/> 
   </UML:StructuralFeature.type> 
  </UML:Attribute> 
 </UML:Classifier.feature> 
</UML:Class> 

Fig. 4-12. An excerpt from a UML XMI document representing the Musician 
UML class 
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4.8 The Need for Modeling Spaces  

After reading the previous section, readers can be expected to be confused 
by the use of many XML documents to represent models from different 
MDA levels. The main reason for doing that is that we are trying to 
represent one modeling paradigm (i.e., the MDA) in terms of another one 
(i.e., XML). One of the critical issues is that a metamodel can be 
represented using an XML document, but at the same time we generate an 
XML schema based on the same metamodel. Furthermore, we use both 
XML documents and MDA models to represent things taken from reality, 
but at the same time we represent MDA models using XML. So, are MDA 
models things from the real word? An additional question is whether 
instantiation relations between XML schemas and XML documents are the 
same as instantiation relations between MDA metamodels and models. 
Similar problems can be expected in understanding the differences and 
similarities between MDA models and ontologies. Since an understanding 
of the relations between these two modeling spaces is very important for 
the purpose of this book, the next chapter defines the concept of modeling 
spaces [Djuri  et al., 2006b].    



5. Modeling Spaces 

It is well known from software project management practice that 
developers' familiarity with the principles of several different modeling 
approaches can be beneficial for the development team. Changing the 
modeling and design aspects from time to time during the system 
development, e.g. from OO to relational, from relational to functional, and 
the like, often helps prevent schedule overruns [Zahniser, 1993]. 

In practice, developers commonly use one or more integrated, complex 
tools that involve multiple modeling approaches. Remember your last 
round-trip with UML [OMG UML, 2003b], Java/C# code, specialized 
technologies such as J2EE, database schemas, XML files etc.? You do not 
always need to think about the relationships between these; sometimes it is 
a matter of choosing the right option from the menu of your favorite 
integrated development environment. However, you might find that, even 
when the tool you use supports changes from one modeling aspect to 
another, getting the big picture is a rather complex task. Things get even 
more complex in situations when the support provided by tools is not 
straightforward and you need a lot of effort to figure out how to transform 
one model to another. 

Using a number of modeling approaches greatly increases the 
developers' ability to better describe the problem using the right approach, 
but is also more complex to comprehend in its entirety. Moreover, it can be 
difficult for software developers to adopt the practice of using a wide 
spectrum of modeling approaches because such approaches may seem too 
different and too unrelated to each other. In order to save time and effort 
when working under tight development schedules, practitioners tend to 
focus on individual aspects of modeling [Seidewitz, 2003]. For all these 
reasons, a common view of various modeling approaches is highly 
desirable.

We have defined a formal encompassing framework for studying many 
modeling problems in a more comprehensive way. We call this framework 
“modeling spaces”. Its development was motivated by a desire to provide a 
better understanding of the vast diversity of things that can be modeled, 
and a clear rationale for using and combining different software modeling 
technologies. It has direct implications for software engineering processes 
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and activities, since it allows systematic change of modeling and design 
views throughout the system development cycle. 

5.1 Modeling the Real World 

If we search a dictionary for the word “model”, we find several definitions 
– most of them just referring to the special cases of models most often 
used; for instance: a replica of an item, a person wearing clothes at a 
fashion show, or a drawing of a building. Few of these definitions are 
generally applicable. Fortunately, there is a simple and general definition – 
a model is a simplified abstraction of reality [Hagget & Chorley, 1967]. 
Using that definition, we can explain why these special cases are models. 
A person wearing clothes at a fashion show does not represent 
herself/himself, but the appearance of any person wearing those clothes; 
thus that is a model. A drawing of a building is not just a sheet of paper 
with lines; it is also a simplified abstraction of a building containing only 
data that is important in a given context. 

Fig. 5-1. A few common models put into a MDA-inspired layered architecture 
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Figure 5-1 shows some common examples of models put into a layered 
architecture conceptually inspired by the MDA– a famous painting (the 
Mona Lisa, also known as La Gioconda, painted by Leonardo da Vinci in 
the 16th century), and part of a music score (of the song “Smoke on the 
Water”). A noble Renaissance woman and a rock song are things from the 
real-world, in the M0 layer. A painting and a sheet of music are obviously 
abstractions of real world things. Therefore, they are models and can be 
put in the M1 (model) layer. Metamodels are used to define these models. 
In the case of a music score, which is a written interpretation of a song, the 
metamodel (M2) is a set of concepts – stave, note, etc. – and rules that 
define what each note means and how we can arrange them on a stave. In 
this context, the meta-metamodel (M3) includes self-defined concepts that 
also define a stave, note etc. Although this architecture is imprecise and 
definitely not perfect from the perspective of music theory, at least it 
captures a formal interpretation of music. 

Things get harder in the case of the painting. Is it possible to specify a 
metamodel that can define such a complex and ambiguous model as a 
masterpiece painting? A simplistic view based on physical appearance 
only might lead to a definition of this metamodel in terms of concepts such 
as line, circle and color. The meta-metamodel would then be a set of 
concepts used to define line, circle, color and their meanings. However, 
this painting, like any other work of art, is much more than just lines and 
colors. It has much to do with human psychology and experience and can 
be interpreted in many ways. It is much more difficult, if not impossible, to 
define a formal metamodel or meta-metamodel in this case. We may 
anticipate that they exist, but they will be extremely complex and implicit. 

Another important issue is that, although the Mona Lisa and written 
notes are models, they are also things in the real world. We can hold them 
in our hands (if the guards let us do this, in the case of the Mona Lisa) and 
they can be items entered in an information system that stores information 
about art. 

5.2 The Real World, Models, and Metamodels 

The previous analysis leads to two important conclusions. First, something 
can be taken as a model if it is an abstraction of things in the real world, 
but  is simultaneously a thing in the real world. Whether we take it as a 
model or as a real-world thing depends on the context, i.e. on our point of 
view. Second, models can be defined using metamodeling concepts 
formally or implicitly. Since implicit metamodels, as in the case of works 
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of art, cannot be precisely defined using formalisms, we shall analyze only 
formal models in the rest of this discussion. Nevertheless, many of the 
conclusions can also be applied to implicit metamodels.  

Figure 5-2B shows a general modeling architecture that was inspired by 
the MDA, and is in fact a generalization of it. In such a modeling 
architecture, the M0 layer is the real world as in [Atkinson & Kühne, 2003; 
Bézivin, 2004]. It includes all possible things that we try to represent using 
models (the M1 layer). This representation imay be more or less abstract 
and simplified, depending on how rich our models are. Models are defined 
using concepts defined in metamodels (M2), and so each metamodel 
determines how expressive its models can be. The metamodels are also 
defined using concepts. These concepts belong to meta-metamodels (M3). 
We could continue this layering to infinity, but it makes much more sense 
to stop at some point. The topmost layer contains the super-metamodel 
(Mn), which is metacircular (defined by its own concepts). Between Mn 
and M1, there are n-2 layers. This architecture is said to be n-layered, 
where n is the actual number of layers above M0. 

Fig. 5-2. (A) General four-layer modeling architecture (B) MDA

We use the term “represents” to denote that a model takes the place of a 
real-world thing, acting on its behalf in some specific context. Models’ 
concepts “conformTo” the metaconcepts that define them, in the sense that 
metaconcepts determine their nature, specify their precise meaning and 
form, and identify essential qualities. These terms can be defined more 
precisely defined in specific contexts and modeling systems. In the context 
of art, the Mona Lisa represents the ideal of beauty. In a different way, a 
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specification of an information system represents the actual programs in 
some other context. In yet another way, these programs represent the real 
business problem in a third context. Moreover, the abstraction is not 
absolute, but context-dependent; a real-world thing and its model could 
switch places when the context is changed. 

The most widely known example of an n-layered architecture today is 
the Model Driven Architecture (MDA), based on three layers (Fig. 5-2B). 
The MDA's meta-metamodel, the Meta-Object Facility (MOF), is the 
super-metamodel (because M3 is the topmost layer here). The MOF 
standard defines an abstract language and a framework for specifying, 
constructing and managing technology-neutral metamodels. In essence, the 
MOF is an object-oriented metamodeling language extracted from the 
UML core. Well-known examples of MOF-defined metamodels include 
UML and CWM (Common Warehouse Metamodel). In the MDA, the 
XML Metadata Interchange standard (XMI) is used to define a mapping 
from MOF-defined metamodels to XML documents and schemas, thus 
enabling sharing of meta-metamodesl, metamodels and models. 

We shall not ask the question "How many layers are optimal?" here. In 
the original two-layered UML-based architecture, UML was the super-
metamodel and the only metamodel. This solution was not able to support 
other metamodels, so another layer based on the MOF was added to 
support different kinds of models. We shall show later that most of today's 
popular modeling architectures can be considered as three-layered, and 
thus the following discussion will use three layers for the sake of 
simplicity. 

5.3 The Essentials of Modeling Spaces 

A modeling space (MS) is a modeling architecture based on a particular 
super-metamodel. Models in the M1 layer represent the real world in the 
context of a separate universe, organized in a hierarchy. Every layer above 
M0 in this hierarchy conforms to the higher layer, finally reaching the top 
layer containing the self-defined super-metamodel. If the super-metamodel 
was defined by some other concepts, it would not be a super-metamodel, it 
would exist at some lower layer in some other modeling space.  

Figure 5-3 shows a few examples of well-known modeling spaces. The 
most straightforward example from this picture is the MOF MS. It is 
defined by the MOF meta-metamodel (MOF is the super-metamodel here), 
which in turn is defined by itself. It defines various metamodels, for 
instance UML [OMG UML, 2003b] or ODM (Ontology Definition 
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Metamodel - a metamodel for ontology modeling in MDA) [Djuri  et al., 
2005a], that are used to describe models that represent things in the real 
world. The same reality is described in the context of other modeling 
spaces, such as EBNF and RDFS spaces. Resource Description Framework 
Schema (RDFS) is a language that defines classes of defined resources and 
their properties in a machine-processable way. Many software engineers 
would associate terms such as “model” and “modeling” exclusively with 
the UML “aristocracy”, considering EBNF-based models (Java, C#, C++ 
code) as more technical, flattened artifacts and “ignoble citizens”. 
However, Java code (and also C++ and other code) is a model, since it 
represents an abstraction of reality. The same applies to XML code, 
databases, books, etc – they are all models, but modeled in terms of 
different modeling spaces, determined by different super-metamodels. 

Fig. 5-3. The RDFS, MOF and EBNF modeling spaces 

If we model the real world in a particular modeling space, we shall use 
certain models. If we model the same reality in another modeling space, 
we shall describe it with different kinds of models, highlighting other 
characteristics when abstracting from reality. The models in the first 
modeling space will be a part of reality that we can model using the 
models in the second modeling space. 

Figure 5-4 clarifies this duality with an example of the same thing being 
simultaneously a model and a real-world thing. Along the vertical axis, the 
world is modeled in the MOF modeling space. Along the horizontal axis is 
the EBNF space hierarchy, which is a real-world thing in the MOF space. 
An interesting observation here is that any modeling space, such as the 
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EBNF space or even the MOF space itself, is a part of the real world from 
the MOF-space point of view. In general, the way we model a business 
system or other “real” domain is very much the same as the way we model 
meta-metamodels, metamodels, or models from another modeling space. 
Of course, these models involve a certain level of abstraction, so there is a 
possibility of losing some information. 

Fig. 5-4. The MOF MS sees EBNF MS as a set of things from the real world 

For many software engineers, this duality is complicated to understand 
at first. Try a couple of analogies. Ghosts do not really exist (well, we hope 
so!), but they are things from the real world. Some people believethat  
there is life outside of the Solar system, and some claim it is pure fiction, 
but life outside the Solar system is a thing from the real world. Otherwise, 
we would not be able to model it using movies, literature, video games, 
etc. The fact that the M1-M3 layers are fiction and above the M0 layer 
does not mean that meta-metamodels, metamodels and models are things 
outside of reality. Everything is in the real world; we just use a convention 
to put some things into layers, depending on the context. 
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5.4 Modeling Spaces Illuminated 

Modeling spaces can be defined in a more or less abstract manner. Some 
modeling spaces are focused on conceptual (abstract or semantic) things, 
such as models, ontologies and mathematical logics. These spaces are not 
aimed at in techniques for representation or for sharing their abstractions. 
We call such spaces conceptual modeling spaces. However, we must have 
some techniques to materialize (or serialize) those modeling spaces. We 
can do this using concrete modeling spaces, which are equipped with 
notation. Examples of such materializations are syntax and databases. 

Take the MOF space as an example of a conceptual modeling space. 
The basic concepts of the MOF meta-metamodel – such as Class, 
Association, Attribute, Package and the relations among them – are 
expressed using those concepts themselves. We can draw them using UML 
diagrams, but a group of boxes and lines is not an MOF model – it is a 
drawing of an MOF model. We can serialize them into XMI, enabling 
computers to process them and programs to share them – but then we leave 
the MOF modeling space and enter the EBNF modeling space. One can 
argue that these drawings, i.e. UML diagrams, or models serialized into 
XMI, are inside the MOF modeling space because they represent MOF 
concepts. Indeed, they do represent concepts from the MOF space. 
Simultaneously, they represent other things from the real world. It means 
that the MOF concepts are modeled in another modeling space. 

EBNF is an excellent example of a concrete modeling space. 
Theoretically well founded, it arguably has some “semantics” primarily for 
type checking, and has a syntax that is formally specified using a grammar. 
However, it in fact lacks semantics; when we parse the expression name = 
“Mona Lisa”, we obtain a syntax tree that does not know that it is dealing 
with the name of a painting. We always need some external interpretation 
of what its abstract syntax means. Actually, this interpretation is given in 
corresponding models from other technical spaces that have been 
serialized into the BNF form. 

Being able to represent only bare syntax, concrete modeling spaces need 
some means to express the semantics, i.e. the meaning of the data they 
carry. Conceptual modeling spaces, on the other hand, are able to represent 
semantics, but need a means to represent their information physically. It is 
obvious that they should complement each other’s representation abilities 
to create models that have both a semantics and a syntax. One of the most 
interesting examples of this symbiosis of various modeling spaces can be 
found in the OMG Model Driven Architecture. 
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We can find similar “modeling patterns” in spoken languages, where 
people of different nationalities use different languages to express the 
same meaning. Regardless of the fact that they have the same things in 
mind (i.e. the same semantics), they need some rules to share the 
meanings. Spoken languages have their own syntax for sharing semantics. 
Just as we can model the same semantics in different modeling spaces, we 
can talk about the same thing using different spoken languages. Similarly, 
definitions of mathematical languages (i.e. logics) include two parts: 
syntax and semantics. 

Fig. 5-5. Orthogonal and parallel spaces 

There are two types of scenarios in which more than one modeling 
space is used, both shown in Fig. 5-5: 

Parallel spaces – one modeling space models the same set of real-world 
things as another modeling space, but in another way. In this case, the 
relation between these modeling spaces is oriented towards pure 
transformation, bridging from one space to another. Examples of such 
parallel modeling spaces are the MOF and ECore (ECore is a meta-
metamodel very similar to but also different from the MOF; although 
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ECore is a little simpler than the MOF, they are both based on similar 
object-oriented concepts). As another example, the RDF(S) MS and the 
MOF MS can also be used as parallel spaces. 
Orthogonal spaces – one modeling space models concepts from another 
modeling space, taking them as real-world things, i.e. one MS is 
represented in another MS. This relation is often used in round-trip 
engineering to facilitate various stages of modeling a system. For 
example, in order to make a Java program we could first use a Java 
UML profile to create classes and method bodies, then transform this 
UML model into Java code, and complete the Java program using a Java 
Integrated Development Environment. Orthogonal modeling spaces are 
also used when a conceptual modeling space is implemented using a 
concrete modeling space – for example, when one is developing an 
MOF-based repository to run in a Java virtual machine. If we use the 
MOF to define an RDFS or OWL metamodel, the MOF and RDFS 
spaces are orthogonal. 
The MOF modeling space is the shining star of the MDA. Its meta-

metamodel, the MOF, defines the core concepts used to specify all the 
metamodels that the MDA is based on (UML, CWM, and the MOF itself) 
and many other domain-specific metamodels. Software engineers are often 
confused about how these concepts are represented. The MDA includes a 
standard for representation (or serialization) of MOF-based models using 
XMI (which is an XML-based representation of objects), so when software 
engineers see XMI they often think it is UML (or the MOF).  

The truth is a little different. The XMI document that they are looking at 
is an XML document that models concepts from the MOF modeling space 
in the XML modeling space using XML concepts such as “element” and 
“node”. XML is then modeled with concrete XML syntax in the EBNF 
space. The same applies to the Java Metadata Interface (JMI) standard 
[Dirckze, 2002]; it models MOF concepts using Java constructs that enable 
the implementation of MOF-based repositories. Both the MOF XMI and 
the JMI standards are in fact standards for modeling MOF space models in 
other, concrete modeling spaces. 

In Fig. 5-5A we can see several modeling spaces included in the MDA 
and their orthogonal, representation-oriented relations that, depending on 
the context, many form a “modeling circle” that can often be confusing. 
TheMona Lisa, the painting, is modeled in the MOF space using the 
concept of Object. This concept exists only as an idea – the MOF space is 
a conceptual modeling space, and hence it needs some kind of syntax for 
representation. Concrete modeling spaces such as those based on EBNF 
(Java and XML) can be used to represent the MOF concepts. This is the 
second stage of the representation in Fig. 5-5 – the object monaLisa in the 
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MOF space is modeled in the EBNF space as the RefObject monaLisa 
(RefObject is a part of the JMI specification).  

Such concrete concepts from XMI and JMI can be (and often are) also 
modeled using their corresponding MOF-based metamodels or UML 
profiles, bringing them back to the MOF modeling space. In Fig. 5-5, the 
monaLisaRefObject is an instance of the corresponding concept in the 
MOF-based Java metamodel in the MOF modeling space. The MOF space 
is involved two times in this “chain” of representations. First the model in 
the MOF space (monaLisa:modeldomain.Object) is in the M1 layer, but 
later it descends to the M0 layer in the hierarchy although the other MOF 
model is used in the M1 layer. 

However, the MDA is not the only standard for model-driven 
architectures – there is also EMF. Figure 5-5B shows the same real-world 
concept, the Mona Lisa painting modeled in two different modeling spaces 
in parallel. It is often necessary to move completely from one modeling 
space to another by means of bridges; there is less room for confusion 
because one modeling space is translated into another without changing 
the modeling layers. In this case, metamodels from the MOF modeling 
space (UML, ODM, etc.) translated into the corresponding ECore-based 
metamodels will still be in the M1 layer. 

5.5 A Touch of RDF(S) and MOF Modeling Spaces 

The usage scenarios for parallel spaces most often pertain to conceptual 
MSs that model the same reality using different concepts. Each of these 
MSs is implemented in some other, more concrete MS, as a represented 
reality. In order to exchange models between conceptual MSs, it is 
necessary to provide transformations from one space to another. These 
transformations are also models [Bézivin et al., 2003], and should be 
developed in an MS that can represent both the source and the target MS. 
Moreover, the transformation also has to be represented in some concrete 
MS orthogonal to the source and target MSs, which leads from the 
conceptual model of the transformation to its implementation. 

Figure 5-6 shows two parallel conceptual MSs, the RDF(S) MS and the 
MOF MS, and the space that represents them orthogonally, EBNF MS. 
MOF and RDF(S) model the real world in parallel, using modeling 
languages (UML, ODM, OWL or another language) that are defined using 
different meta-meta concepts. At the conceptual level, we could establish a 
transformation from one language to another, for example from. UML to 
ODM and vice versa, in the same MS. An example of a transformation 
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modeling language for such purposes in the MOF is Query-View-
Transformation (QVT) [OMG QVT, 2003]. RDF and RDF Schema, and 
three different dialects of OWL, namely OWL Full, OWL DL and OWL 
Lite are examples of languages in the M2 layer of RDF(S) MS. Efforts to 
develop query and transformation language in the RDF(S) MS are 
underway: Triple, RQL etc. [Haase et al., 2004]. 

Fig. 5-6. Transformations between the RDF(S) MS and the MOF MS 

We can also establish a transformation between the MSs, a bridge that 
transforms RDF(S) concepts to MOF concepts in the  M3 layer. Using that 
bridge, we can transform any metamodel (language) defined in RDF(S) 
into its corresponding metamodel defined in the MOF (both are in the M2 
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layer). Of course, we can expect an information loss depending on how 
similar the meta-meta concepts (M3) are. RDF(S) concepts, rdfs:Class and 
rdf:Property are similar to, but not the same as the MOF Class, Association 
and Attribute. 

Both the MOF and the RDF(S) spaces can be represented in other, more 
concrete MSs. They can be implemented using repositories, serialized into 
XML etc., which involves many MSs. For the sake of simplicity, we have 
skipped a few steps and have shown thse spaces as Java program code and 
XML documents in the EBNF space. Models from the MOF space are 
modeled in Java code according to the JMI standard, and in XML 
according to the MOF XMI standard. For languages from RDF(S), XML is 
the natural method of representation. They can also be modeled using Java 
APIs (Jena etc.).  

As the RDF(S)-MOF bridge is also a model; it can be also represented 
in a concrete MS representing meta-metamodels that should be bridged. 
Examples include an XSLT that transforms an MOF XMI document into 
RDF(S) XML document and vice versa, a set of Java classes that adapt 
JMI interfaces to RDF(S) API interfaces, and a Java program that does a 
batch transformation from a JMI-based code to an RDF(S) API-based one. 

As Fig. 5-6 shows explicitly, a single bridge models a transformation 
between two MSs in the M3 layer, between RDF(S) and MOF meta-
metamodels. Transformations between metamodels situated in a single MS 
in the M2 layer are internal to that MS. However, they can be implemented 
through concrete MSs (e.g. EBNF for XSLT). 

5.6 A Touch of the Semantic Web and MDA Technical 
Spaces

Modeling Spaces are a concept inspired by the concept of a technical space 
(TS), which is defined as a working context with a set of additional 
concepts, body of knowledge, tools, required skills, and possibilities 
[Kurtev et al., 2002]. Fortunately, we can use MSs to enhance this fuzzy 
definition of TSs.

A technical space is a working context that includes various related 
MSs. Most often the TS is built around some MS, whereas the role of other 
MSs is supportive (e.g., implementation), or implicit (literature, know-
how). For example, the MOF MS is at the center of the MDA TS. 
However, the MDA TS also partially includes other MSs: XML and EBNF 
in the area of XMI representation, EBNF in the area of repository 
implementation (JMI), an implicit MS that includes literature, etc. 



140      5.  Modeling Spaces 

Transformations, for example to plain Java, C++ or VB code, are also 
models belonging to one or several MSs that are included to some extent in 
the MDA TS. 

Figure 5-7 shows the overlap between the MDA TS and the Semantic 
Web TS in some MSs (most of the MSs belonging to these TSs have been 
omitted for the sake of simplicity). The MDA TS is built around the MOF 
MS, which resides completely in the MDA TS. The MDA TS also includes 
OWL ontologies that model MOF-based concepts or contain knowledge 
about the MDA, and which are parts of the RDF(S) MS. On the other 
hand, the Semantic Web TS includes the RDF(S) MS. Additionally, it 
includes parts of the MOF MS related to the ODM metamodel and the 
Ontology UML Profile, and two-way transformations from these MOF-
based models to OWL. These transformations are also part of the MDA 
TS. Recall that those transformations are also modeled, so they belong to 
some MSs as well. Some researches are trying to identify a way to enable 
transformations between different MSs in the M3 layer using just one two-
way transformation for all three layers [Bézivin et al., 2005]. 

Fig. 5-7. The Semantic Web and Model Driven Architecture technical spaces 

It follows from the above discussion that one technical space includes 
one or more modeling spaces and that every modeling space is a part of 
one or more technical spaces; a technical space is a means for grouping 
modeling spaces that have something in common or simply need to 
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interact. A bridge connecting two modeling spaces is also a means for 
connecting the surrounding technical spaces. 

5.7 Instead of Conclusions 

Modeling spaces abstract and generalize a vast number of diverse 
modeling approaches, and can help engineers see the big picture of what 
underlies the software that they make or use. They also clarify the 
structures of different modeling approaches, their similarities and 
dissimilarities, their mutual relations, and how they work together. By 
making a clear distinction between conceptual and concrete, and parallel 
and orthogonal modeling spaces, developers can successfully select 
mechanisms to automate the transfer and sharing of information, 
knowledge, and even other modeling spaces between different projects and 
applications. Likewise, understanding specific modeling spaces helps one 
to select suitable modeling and development tools for a specific project. 

In this book, we focus on a few modeling spaces, most notably the 
RDF(S) MS, the MOF MS and XML, and a few technical spaces, namely 
the Semantic Web TS, the Model Driven Architecture TS and the XML 
TS. The above  discussion helps you to visualize what is going on. 



Part II    The Model Driven Architecture and
   Ontologies 



6. Software Engineering Approaches to Ontology 
Development

Ontologies, as formal representations of domain knowledge, enable 
knowledge sharing between different knowledge-based applications. Di-
verse techniques originating from the field of artificial intelligence are 
aimed at facilitating ontology development. However, these techniques, al-
though well known to AI experts, are typically unknown to a large popula-
tion of software engineers. In order to overcome the gap between the 
knowledge of software engineering practitioners and AI techniques, a few 
proposals have been made suggesting the use of well-known software en-
gineering techniques, such as UML, for ontology development [Cranefield, 
2001a]. However, software engineering approaches themselves do not en-
able the representation of ontology concepts derived from description lo-
gics, and such concepts are included in modern Semantic Web ontology 
languages (e.g., RDF, RDF Schema, and OWL). 

6.1 A Brief History of Ontology Modeling 

In this section we describe the existing efforts to enable the use of UML, 
as well as MDA-based standards, for ontological engineering. We explain 
the formal background of each approach and its relation to ontology lan-
guages. The idea is to recognize all similarities and differences between 
the two modeling spaces, and thus get a clearer picture about all issues that 
should be considered when bridging them.  

6.1.1  Networked Knowledge Representation and Exchange 
Using UML and RDF 

The idea of using UML in ontological engineering was first suggested by 
Cranefield [Cranefield, 2001a]. Cranefield found connections between the 
standard concepts of UML and those of ontologies: classes, relations, 
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properties, inheritance, etc. However, he also observed certain dissimilari-
ties between them. The most important difference is related to the concept 
of a property– in UML, an attribute’s scope is the class that defines it, 
whereas in an ontology a property is a first-class concept that can exist in-
dependently of a class. Here are the main presumptions of Cranefield’s 
proposal for UML-based ontology development: 

UML class diagrams provide a static modeling capability that is well 
suited to representing ontologies, that is to say, modeling the taxonomy 
of the ontology’s concepts and the relations between those concepts 
(i.e., the schema level of the ontology). For an example, see Fig. 6-1. 
UML object diagrams can be interpreted as declarative representations 
of knowledge, that is to say, they can be used for modeling instances of 
an ontology (i.e., body of knowledge) [Chandrasekaran et al., 1999]. For 
an example, see Fig. 6-2. 
Object Constraint Language (OCL) can be used for specifying con-
straints on an ontology. 
The same paradigm can be used for modeling both ontologies and 
knowledge, which can be rather useful for software developers. 

However, Cranefield recognized one significant current shortcoming of 
UML: the lack of a formal definition [Cranefield, 2001b]. The semantics 
of UML are defined by a metamodel, some additional constraints ex-
pressed in a semiformal language (i.e., OCL), and descriptions of the vari-
ous elements of the language in plain English. Cranefield argued that the 
use of the basic features of class and object diagrams for representing on-
tologies and knowledge seems no more prone to misinterpretation than 
does the use of the Resource Description Framework – a language which 
underlies the Semantic Web but also lacks official formal semantics. Thus, 
he proposed an approach for integrating UML and RDF(S). 

Cranefield’s approach is founded on the following set of standards, 
which he recognized as important technological requirements for UML 
representations of ontologies and knowledge: 

XML Model Interchange (XMI), which stands for an XML-based stan-
dard for serializing UML models; 
well-known UML tools (e.g. IBM Rational Rose, Poseidon for UML, 
and MagicDraw) that can export the present UML artifacts in the UML 
XMI format; 
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the Resource Description Framework (RDF) and RDF Schema (RDFS) 
– together often referred to as RDF(S), which is a W3C XML-based 
standard for sharing ontologies on the Semantic Web; 
eXtensible Stylesheet Language Transformations (XSLTs), which Cra-
nefield used to transform UML XMI into: 
- a set of Java classes and interfaces corresponding to those in the on-

tology; and
- RDF(S) (actually UML classes are transformed into RDFS, and UML 

objects into RDF statements). 

Fig. 6-1. A part of the Family ontology represented in the form of a UML class 
diagram, developed by Stephen Cranefield 

The main problem that Cranefield had to deal with when generating an 
RDF schema that corresponds to a UML model is that RDF properties are 
first-class objects and are not constrained to the context of a particular 
class. This can lead to conflicting domain declarations if two (or more) 
different classes have equally named field attributes. He decided to prefix 
the name of each such field with the name of the class that it belongs to 
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(e.g., Person.name). However, the disadvantage of this solution 
becomes obvious in the presence of inheritance, when fields of one class 
may be represented by properties with different prefixes, some referring to 
the class itself and others to the parent class. 

Fig. 6-2. A UML object diagram representing instances of the ontology classes 
shown in Fig. 6-1 

Besides the problem of transforming UML attributes and associations 
into RDF properties, Cranefield solved additional problems such as the fol-
lowing:

When a UML attribute/association end has a multiplicity upper limit 
greater than a specific value, the XSLT used transforms that into an 
RDFS bag. 
When association ends have a UML “ordered” constraint, the XSLT 
transforms them into RDFS sequences. 

Finally, note that Cranefield needed to extend the RDFS definition gen-
erated by the XSLT. He did this because there is no mechanism in RDFS 
to parameterize a collection type (such as rdf:Bag) with the type of ele-
ments that it may contain. Therefore, a nonstandard property 
rdfsx:collectionElementType was introduced to represent this 
information.  

Figure 6-3 presents the RDFS document generated by applying Crane-
field’s XSLT to the UML classes shown in Fig. 6-1. 

Concluding overview of the first and most cited UML-based approach 
to ontology development, we need to emphasize some of its limitations as 
well (especially since they propagate to the generated languages): 
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One cannot deduce whether the same property has been attached to 
more than one class in the case of property inheritance. 
A hierarchy of properties cannot be created, even though this is allowed 
in RDFS. 
Standard UML cannot express advanced features of ontologies (e.g., 
OWL restrictions). 
The target RDFS ontology description does not have advanced restric-
tion concepts (e.g., multiplicity). 

<?xml version="1.0" encoding="UTF-8"?> 
<rdf:RDF xml:lang="en"  
 xmlns:rdfsx="http://nzdis.otago.ac.nz/2000/01/rdf-schema-extensions#"  
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"  
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
 <rdfs:Class rdf:ID="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
 <rdf:Property ID="http://nzdis.otago.ac.nz/0_1/family#Person.name"> 
  <rdfs:domain rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
  <rdfs:range rdf:resource="rdfs:Literal"/> 
 </rdf:Property> 
 <rdf:Property ID="http://nzdis.otago.ac.nz/0_1/family#Person.parent"> 
  <rdfs:domain rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
  <rdfs:range rdf:resource="rdf:Bag"/> 
  <rdfsx:containerElementType rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
 </rdf:Property> 
 <rdf:Property ID="http://nzdis.otago.ac.nz/0_1/family#Person.child"> 
  <rdfs:domain rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
  <rdfs:range rdf:resource="rdf:Seq"/> 
  <rdfsx:containerElementType rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
 </rdf:Property> 
 <rdf:Property ID="http://nzdis.otago.ac.nz/0_1/family#Person.father"> 
  <rdfs:domain rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
  <rdfs:range rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Man"/> 
 </rdf:Property> 
 <rdf:Property ID="http://nzdis.otago.ac.nz/0_1/family#Person.son"> 
  <rdfs:domain rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
  <rdfs:range rdf:resource="rdf:Seq"/> 
  <rdfsx:containerElementType rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Man"/> 
 </rdf:Property> 
 <rdf:Property ID="http://nzdis.otago.ac.nz/0_1/family#Person.mother"> 
  <rdfs:domain rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
  <rdfs:range rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Woman"/> 
 </rdf:Property> 
 <rdf:Property ID="http://nzdis.otago.ac.nz/0_1/family#Person.daughter"> 
  <rdfs:domain rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
  <rdfs:range rdf:resource="rdf:Seq"/> 
  <rdfsx:containerElementType rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Woman"/> 
 </rdf:Property> 
 <rdfs:Class rdf:ID="http://nzdis.otago.ac.nz/0_1/family#Man"> 
  <rdfs:subClassOf rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
 </rdfs:Class> 
 <rdfs:Class rdf:ID="http://nzdis.otago.ac.nz/0_1/family#Woman"> 
  <rdfs:subClassOf rdf:resource="http://nzdis.otago.ac.nz/0_1/family#Person"/> 
 </rdfs:Class> 
</rdf:RDF>

Fig. 6-3. An RDF schema generated from the UML model shown in Fig. 6-1 using 
the XSLT that Cranefield developed 
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Regardless of all the aforementioned constraints of this approach, how-
ever, it is a quite useful solution and can be considered as a kind of agile 
UML-based approach to ontology development that bridges two different 
modeling spaces. 

6.1.2  Extending the Unified Modeling Language for Ontology 
Development

Cranefield’s pioneering work on using software engineering techniques for 
ontology development inspired other authors, and soon more advanced so-
lutions to this problem started to emerge. Baclawski and colleagues have 
stressed that many mature UML tools, and models and much expertise al-
ready exist and can be applied to knowledge representation systems, not 
only for visualizing complex ontologies but also for managing the ontol-
ogy development process. They have introduced two UML-based ap-
proaches to ontology development [Baclawski et al., 2002a; Baclawski et 
al., 2002b]. This and the next subsection describe both of these solutions. 

In their first proposal, Baclawski extended the UML metamodel with 
the constructs of the RDFS and DAML+OIL languages. Though their solu-
tion focuses only on the similarities and differences between the UML and 
DAML+OIL languages, they stated that it can be applied to other knowl-
edge representation languages, such as 

logical languages that express knowledge as logical statements (e.g., 
KIF);
frame-based languages that are similar to object-oriented database lan-
guages;
graph-based languages that include semantic networks and conceptual 
graphs.

Baclawski et al. tried to solve the problem of using UML for developing 
ontologies by defining appropriate mappings between the two modeling 
languages. Therefore they defined general-level mappings between UML 
and DAML+OIL (see Table 6-1). Additionally, they went into a profound 
theoretical discussion of their similarities and differences of these lan-
guages. Here we list only some of their most important findings (for details 
see [Baclawski et al., 2002a]): 

Knowledge representation languages do not have metalevel separation 
(e.g., an instance of a class may be a class). 



6.1  A Brief History of Ontology Modeling      151 

The concepts of classes and instances are common features of the two 
languages. This allows for consistent mappings of these concepts. 
Properties are a stand-alone concept, which is the main problem for 
transforming between the two languages. 
UML multiplicity constraints on associations can affect the membership 
of objects in classes related through an association. In DAML+OIL, 
constraints on properties are imposed somewhat indirectly by specifying 
that a class is a subtype of a class called “restriction.” 

Table 6-1. Rough overview of the relations between the concepts of the 
DAML+OIL and UML languages 

DAML concept Similar UML concept 
Ontology Package 

Class Class 

As sets (union, intersection, etc.) Not supported 

Hierarchy Class generalization relations 

Property Aspects of attributes, associations and 
classes 

Hierarchy 
None for attributes, limited generalization 
for associations, class generalization for 
relations

Restriction
Constraints of association ends, including 
multiplicity and roles, implicitly as a class 
containing the attribute 

Data types Data types 

Instances and values Object instances and attribute values 

The semantics of the specialization/generalization relation are not 
equivalent:

- UML’s relation tends to provide behavioral reuse of modeled con-
cepts. For example, in a graphical tool we would model the class 
Square so as to be the parent of the class Rectangle; the former class 
would have one attribute describing the dimensions of a graphical 
figure, while the latter class would have two attributes (width and 
height).

- DAML+OIL’s relation is set-theoretic (e.g. Rectangle is a parent of 
Square), which should closely reflect the relations between concepts 
in reality. 
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- Finally, Baclawski et al. concluded that the mapping between these 
two relations is consistent, even though they are not semantically 
equivalent.

RDF has a number of container notions: Bag, Seq and Alt. The seman-
tics of these notions are not very clear, and DAML+OIL has largely re-
placed them with the notion of a List. UML does have containers (in 
OCL), and it also has ordered associations which implicitly define a list 
within the context of an association. 
DAML+OIL has the ability to construct classes using boolean opera-
tions (union, intersection and complement) and quantifiers.
RDF allows one property to be a subproperty of another. UML has the 
ability to specify that one association is a specialization of another, al-
though this construct is rarely used.
Constructs in Semantic Web ontology languages are linked together ei-
ther through the use of URIs or by using the hierarchical containment 
relationship of XML. UML uses names in a large number of name-
spaces. For example, each class has its own namespace for its attributes 
and associations. This is enriched by an ability to specify private, pro-
tected, and public scopes. Any mapping from UML to DAML+OIL or 
the reverse must have a mechanism for ensuring that names are properly 
distinguished.

Besides the aforementioned incompatibilities between UML and 
DAML+OIL, Baclawski and colleagues have stressed another important 
aspect. Ontology languages are monotonic, whereas UML and object-
oriented languages are nonmonotonic. A system is monotonic if adding 
new facts can never cause previous facts to be negated. Such defined 
monotonicity is a necessity for realizing the goals of the Semantic Web. It 
supports representation of the diversities common to such a heterogeneous 
environment. Baclawski et al. considered modeling the concept of a person
in order to depict this difference. They assumed that it has been specified 
that every person must have a name. Consider what would happen if a par-
ticular person object did not have a name. In UML, this situation would be 
considered as a violation of the requirement that every person must have a 
name, and a suitable error message would be generated. In a monotonic 
logic, on the other hand, one cannot draw such a conclusion. Baclawski et 
al. concluded that this distinction between UML and ontology languages 
makes it effectively impossible to define a mapping between these lan-
guages that would be able to preserve their semantics. However, it does 
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not prevent one from defining a mapping that preserves semantic equiva-
lence, and that is all that we are attempting to achieve. 

A natural solution to bridging these two different languages is to extend 
UML with primitives that are equivalent to ones from DAML+OIL. How-
ever, solutions that use UML profiles, such as DUET, do not preserve se-
mantics. Accordingly, Baclawski and colleagues made a specific recom-
mendation for modifying the UML metamodel, thus enabling one to model 
using first-class properties, as well as to construct classifiers using boolean 
operations and quantifiers. In Fig. 6-4, we illustrate how MOF-based con-
cepts of the UML metamodel (e.g., Classifier and GeneralizableElement)
were extended with concepts from DAML+OIL (e.g., DerivedClassifier,
Restriction, Union, Intersection, Complement, and Property) using the 
MOF’s generalization/specialization relation. Fig. 6-5 shows the associa-
tions among the newly added concepts in the UML metamodel. 

GeneralizableElement

Classifier Association Property
transitive : boolean

ClassDerivedClassifier

Union

Intersection

Complement

Restriction

DifferentIndividualFromEquivalentTo

SameClassAs

SamePropertyAs

SameIndividualAs

Fig. 6-4. The hierarchy of the metaclasses that are part of the extensions of the 
UML metamodel for DAML+OIL proposed in [Baclawski et al., 2002a] 

Since the development of a new tool able to support this extended UML 
metamodel would be expensive and time-consuming, Baclawski and col-
leagues proposed a UML profile based on their metamodel. Models based 
on that UML profile can be developed using tools for standard UML that 
are already available. In Fig. 6-6, we give an example of a UML diagram 
that Baclawski and colleagues developed in order to illustrate how to spec-
ify an association between the Faculty class and the Organization class. 
The affiliation association end belongs to the location property, which 
states that a location can be a University, a School, or an Institute that is 
not a Company.
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Complement Intersection Union

Classifier

1

0..*

1

0..*

complementOf

1

0..*

1

0..*

intersectionOf

1

0..*

1

0..*

unionOf

Association Associat ionEnd

1

0..*

+part ic ipant 1

0..*

2..*1 2..*1

Restriction
1..* 0..*1..* 0..*

toClass

Property
transitive : boolean

0..* 0..10..* 0..1
1..*

0..*

onProperty

1..*

0..*

Fig. 6-5. The associations among metaclasses that are part of the extensions of the 
UML metamodel for DAML+OIL proposed in [Baclawski et al., 2002a] 

Faculty Organization+affiliation:location

locat ion
<<Property>> <<Restriction>>onProperty

Universi ty

<<Union>>toClass

School

Institute

<<Intersection>>

<<Complement>>
Company

Fig. 6-6. An example of a UML model based on the UML extension for ontology 
development 

Although this approach is the most comprehensive theoretical contribu-
tion to identifying relations between UML and DAML+OIL, it still has 
some shortcomings: 
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DAML+OIL has evolved into OWL, which is the current W3C stan-
dard.
Baclawski et al. did not develop any tool that would be able to map the 
extended UML into a Semantic Web language. Though standard UML 
tools could be used for developing ontologies, we still need a transfor-
mation tool for mapping models from one modeling language into an-
other.
An extended UML metamodel is an awkward solution, as we do not 
need all UML concepts for ontology development. Actually, this issue 
was also recognized by Baclawski et al. themselves, and so they pro-
posed an improved solution based on an independent ontology meta-
model. 

6.1.3  The Unified Ontology Language 

Baclawski and colleagues realized that their initial solution was fairly 
awkward because it introduced some new concepts to the UML meta-
model. Therefore, they have developed an independent ontology meta-
model using the MOF; they have named it the Unified Ontology Language 
(UOL) [Baclawski et al., 2002b]. This metamodel first appeared in public 
at an OMG meeting organized to initiate work on the Request for Propos-
als for specification of the Ontology Definition Metamodel [Baclawski et 
al., 2002b; OMG ODM RFP, 2003]. Although this metamodel was in-
spired by DAML+OIL, it also took the OWL language into account. 

Literal

Node

Ontology

Fact

1

0..n

1

0..n

object

Resource10..n 10..n subject

1
0..n

1
0..n predicate

Package

0..n0..n 0..n0..n
imports

1

0..n

1

0..n

context

1

0..n

context

0..n

1

Fig. 6-7. MOF-compliant metamodel of the Unified Ontology Language (UOL) 
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The proposed UOL should satisfy the following requirements: 

It must be a MOF-based modeling language (i.e. metamodel). 
It must have a bounded two-way mapping between the core UML and 
the core UOL. The two-way mapping must preserve semantic equiva-
lence on levels 0 and 1 of the MDA.
The core UOL must include the same notions as the core UML, namely 
Package, Class, Binary association, Generalization, Attribute, and Mul-
tiplicity constraints. 

Figure 6-7 gives a UML class diagram of a MOF-based metamodel for 
UOL which satisfies the aforementioned requirements. Although it seems 
rather small, it is a very high-level metamodel grounded on RDF and its 
triple-based paradigm. Furthermore, it is a solid starting point for a stan-
dard MOF-based ontology language. It is important to say that a similar 
solution has been used for defining the present ODM proposal. 

6.1.4  UML for the Semantic Web: Transformation-Based 
Approach

Kateryna Falkovych and her colleagues [Falkovych et al., 2003] have pro-
posed a transformation approach to the semantic extraction of ontologies 
from UML models. Their initial presumption is that UML and ontologies 
complement each other. That is to say, UML is designed for building mod-
els by human experts, while OWL is designed to be used at run time by in-
telligent processing methods. However, Falkovych et al. report that the 
process of translation is less than trivial, owing to the differences between 
the two languages. 

With the above presumptions Falkovych and colleagues have proposed 
a transformation of UML diagrams into DAML+OIL ontologies which en-
ables the semantics of UML concepts to be preserved. The main motiva-
tion for developing such a transformation is the existence of large sources 
of ontological knowledge already available in the UML design documents 
of existing applications. Furthermore, one can reason about UML models 
transformed into ontologies. 

Taking into account the theoretical discussion in [Baclawski et al., 
2002a], Falkovych and her associates developed rules for transforming 
UML models into DAML+OIL ontologies. They also stresseded differ-
ences between properties in an ontology and UML associations/attributes. 
Since association is unique in UML, it is mapped into 
daml:ObjectProperty with a unique identifier for the property 
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name. A UML attribute is mapped into daml:DatatypeProperty
with a unique identifier attached. The rationale for mapping an attribute 
only to daml:DatatypeProperty and not to 
daml:ObjectProperty is that usually the type (range) of an attribute 
is a data type. Additionally, Falkovych et al. developed a taxonomy of as-
sociation types in order to preserve semantics of UML associations and to 
distinguish association ends (see Fig. 6-8). Their taxonomy distinguishes 
between four subtypes of association: binary association, unidirectional as-
sociation, aggregation, and composition, which are decomposed further 
into specific subtypes introduced for the purpose of mapping. This taxon-
omy is encoded as a separate DAML+OIL ontology, so that one can refer 
to it from the UML models transformed into DAML+OIL ontologies. Note 
also that all association types at the lowest level of decomposition (not 
shown in Fig. 6-8) can either have a name or be unnamed and can have 
role names attached to association ends. 

Association

Binary Unidirectional Aggregation Composition

Following_direction

Opposite_to_direction

Whole_of_part C_whole_of_part

Part_of_whole C_part_of_whole

Fig. 6-8. Taxonomy of UML association types 

Figures 6-9 and 6-10 depict a UML binary unnamed association con-
necting two UML classes (Boundary point and Boundary segment) and its 
association ends (has and form). Note that the binary association is 
mapped into two daml:ObjectProperty elements. These two proper-
ties have the name of an association with a unique identifier attached to it, 
and they are distinguished by adding an underscore symbol (_) to one of 
them (i.e., G.2 and _G.2). Furthermore, these two properties are inherited 
(using rdfs:subClassOf) from the corresponding class (bi-
nary_unnamed) in the taxonomy shown in Fig. 6-8. It is important to point 
out that association ends (has and form) are also mapped onto object prop-
erties, which are inherited from the properties representing the UML asso-
ciation (G.2 and _G.2). In fact, the original names of these two properties 
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are extended by adding their UML unique identifiers, and thus their final 
names are has_G.4 and form_G.3.

Boundary 
point

Boundary
segment

1..n

1 +has

+form

1

1..n

<daml:Class rdf:ID="Boundary point">
<rdfs:label>Boundary point</rdfs:label>
<rdfs:subClassOf>

   <daml:Restriction daml:minCardinality="1">
    <daml:onProperty rdf:resource="#has_G.4"/>
    <daml:toClass rdf:resource="#Boundary segment"/>
   </daml:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

   <daml:Restriction daml:minCardinality="1">
    <daml:onProperty rdf:resource="#_G.2"/>
    <daml:toClass rdf:resource="#Boundary segment"/>
   </daml:Restriction>

</rdfs:subClassOf>
</daml:Class>

<daml:ObjectProperty rdf:ID="has_G.4">
<rdfs:subPropertyOf rdf:resource="#_G.2"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="_G.2">
<rdfs:subPropertyOf rdf:resource="#binary_unnamed"/>

</daml:ObjectProperty>

<daml:Class rdf:ID="Boundary point">
<rdfs:label>Boundary point</rdfs:label>
<rdfs:subClassOf>

   <daml:Restriction daml:minCardinality="1">
    <daml:onProperty rdf:resource="#has_G.4"/>
    <daml:toClass rdf:resource="#Boundary segment"/>
   </daml:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

   <daml:Restriction daml:minCardinality="1">
    <daml:onProperty rdf:resource="#_G.2"/>
    <daml:toClass rdf:resource="#Boundary segment"/>
   </daml:Restriction>

</rdfs:subClassOf>
</daml:Class>

<daml:ObjectProperty rdf:ID="has_G.4">
<rdfs:subPropertyOf rdf:resource="#_G.2"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="_G.2">
<rdfs:subPropertyOf rdf:resource="#binary_unnamed"/>

</daml:ObjectProperty>

Fig. 6-9. DAML+OIL representation of the Boundary point UML class and its as-
sociation and association end

Boundary 
point

Boundary
segment

1..n

1 +has

+form

1

1..n

<daml:Class rdf:ID="Boundary segment">
<rdfs:label>Boundary segment</rdfs:label>
<rdfs:subClassOf>

   <daml:Restriction daml:cardinality="1">
    <daml:onProperty rdf:resource="#form_G.3"/>
    <daml:toClass rdf:resource="#Boundary point"/>
   </daml:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

   <daml:Restriction daml:cardinality="1">
    <daml:onProperty rdf:resource="#G.2"/>
    <daml:toClass rdf:resource="#Boundary point"/>
   </daml:Restriction>

</rdfs:subClassOf>
</daml:Class>

<daml:ObjectProperty rdf:ID="form_G.3">
<rdfs:subPropertyOf rdf:resource="#G.2"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="G.2">
<rdfs:subPropertyOf rdf:resource="#binary_unnamed"/>

</daml:ObjectProperty>

<daml:Class rdf:ID="Boundary segment">
<rdfs:label>Boundary segment</rdfs:label>
<rdfs:subClassOf>

   <daml:Restriction daml:cardinality="1">
    <daml:onProperty rdf:resource="#form_G.3"/>
    <daml:toClass rdf:resource="#Boundary point"/>
   </daml:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

   <daml:Restriction daml:cardinality="1">
    <daml:onProperty rdf:resource="#G.2"/>
    <daml:toClass rdf:resource="#Boundary point"/>
   </daml:Restriction>

</rdfs:subClassOf>
</daml:Class>

<daml:ObjectProperty rdf:ID="form_G.3">
<rdfs:subPropertyOf rdf:resource="#G.2"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="G.2">
<rdfs:subPropertyOf rdf:resource="#binary_unnamed"/>

</daml:ObjectProperty>

Fig. 6-10. DAML+OIL representation of the Boundary segment UML class and its 
association and association end

Falkovych and her associates have implemented this mapping from 
UML models to DAML+OIL practically using XSLT. They found that 
XSLT was a quite cumbersome solution for more complex mappings, as 
well as very sensitive to the format of the input file. 



6.1  A Brief History of Ontology Modeling      159 

Besides vthe ery positive results of this approach, we have found that 
some limitations of this solution are the following: 

The lack of mechanisms for formal property specification in UML (e.g., 
for defining property inheritance or an inverseOf relation between prop-
erties). Hence one cannot express properties and other ontology primi-
tives in UML, as was possible with the UML extension proposed by Ba-
clawski and colleagues [Baclawski et al., 2002a]. One might expect this 
limitation, as the primary goal of the solution was to map UML onto on-
tologies, and not in the opposite direction; 
The use of UML class diagrams, which contain only graphical artifacts 
of the real UML elements included in a model (e.g., all associations ti-
tled with the same name are assumed to represent the same property, al-
though each association is a distinct model element in UML). Of course, 
this diagram problem can be partly overcome with XMI for UML 2.0, 
which supports diagram representation. 

6.1.5  The AIFB OWL DL Metamodel  

The next proposal that we analyze in this chapter is the one put forward by 
Sara Brockmans and her colleagues [Brockmans et al., 2004]. These re-
searchers were inspired by the OMG ODM RFP and the initial submis-
sions to that RFP, given in [ODM DSTC, 2003; ODM Gentleware, 2003; 
ODM IBM, 2003; ODM Sandpiper&KSL, 2003]. Their basic idea was to 
enrich ODM with several separate metamodels, one for each knowledge 
representation (e.g., OWL DL), in order to achieve better readability and 
usability. Additionally, Brockmans et al. proposed the use of OMG meta-
model mapping facilities to perform mapping between different knowledge 
representations [OMG QVT, 2003]. They argued for such an approach 
rather than for having one core ontology metamodel that would be a com-
mon denominator of different knowledge representations and serve for 
mapping purposes. In fact, they are aware of the fact that their solution re-
sults in a higher number of mappings, but argue that each individual map-
ping is a lot more lightweight and easier to specify and maintain. 

On the basis of the above ideas, Brockmans and colleagues developed a 
metamodel based on OWL DL using MOF2. This metamodel has a one-to-
one mapping to the abstract syntax of OWL DL and thereby to the formal 
semantics of OWL DL. They also defined a UML profile on top of the 
metamodel. It is interesting to note that this UML profile contains graphi-
cal icons for ontology-specific primitives (e.g., restriction, union, and 
someValuesOf), similarly to the UML profile for developing Web applica-
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tions described in Chap. 4 [Conallen, 2002]. One can use this UML profile 
to develop ontologies in most of the present UML tools (e.g., MagicDraw). 
However, to the best of our knowledge, the currently available tools do not 
provide support for transforming either the metamodel or the UML profile 
into any ontology language (e.g., OWL). Therefore, ontology developers 
are prevented from automatically employing ontologies developed using 
UML tools in Semantic Web ontology-based applications.  

While this metamodel and UML profile are based on experience from 
the initial submission to the OMG ODM RFP and on the other MDA-
based solutions listed earlier in this chapter, the main contribution of this 
approach lies in the proposal of the introduction of a separate metamodel 
for each knowledge representation. In fact, the most recent ODM draft 
specification at the time of writing (October 2005) [OMG ODM RFP, 
2005] has adopted a similar solution. This draft consists of two core meta-
models: description logics (nonnormative) and common logics. It also con-
tains three metamodels that represent the abstracts syntax of the languages 
commonly used by the Semantic Web community (RDFS, OWL, and 
Topic Maps); and two more traditional software engineering metamodels, 
Entity Relationship and UML2. In addition, mappings between a number 
of the metamodels are provided. A more detailed discussion of this OMG 
ODM draft specification is provided later in the book. 

6.1.6  The GOOD OLD AI ODM Proposal 

Finally, the authors of this book have also proposed a solution to the OMG 
ODM RFP. This proposal provides a comprehensive response to the ODM 
RFP that defines a metamodel based on OWL Full [Djuri  et al., 2005a], a 
corresponding ontology UML profile (see Chap. 9) [Djuri  et al., 2005b], 
the required transformations (see Chap. 10) [Gaševi  et al., 2005]. On top 
of these definitions an ontology editor called AIR [Djuri  et al., 2006a] has 
been developed (see Chap. 12). More details about this proposal, the tools 
developed, and their practical usage for developing ontologies are given 
later in this book. 

6.2 Ontology Development Tools Based on Software 
Engineering Techniques 

In describing the most relevant approaches to applying software engineer-
ing techniques to ontology development in the previous section, we aimed 
to reflect the most important issues differentiating thsse two modeling 
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spaces used. In this section we outline some well-known tools that enable 
the development of ontologies using software engineering languages. In 
fact, this section discusses only UML-based tools, owing to the wide ac-
ceptance of UML and its CASE tools by the software engineering commu-
nity. 

6.2.1  Protégé 

Protégé is the leading ontological engineering tool [Noy et al., 2001]. It 
has a complex software architecture, easily extensible through plug-ins. It 
is freely available [Protégé, 2005]. Many components providing interfaces 
to other knowledge-based tools (Jess, Argenon, OIL, PAL Constraint, etc.) 
have been implemented and integrated in Protégé. In the same manner 
support is provided for various ontology languages and formats such as 
XML, DAML+OIL (back ends), and OIL (tab).  

Formally speaking, Protégé has a MOF-compatible metamodel (see Fig. 
6-11). The main reason for having a shared metamodel is that generic tools 
operating on any MOF-compliant model can be built [Protégé XMI, 2004]. 
The metamodel is designed as a MOF-compliant metamodel of Protégé 
ontologies that resides in the same metalevel as UML. While Protégé has 
basically been developed on top of an adapted version of the OKBC meta-
model (see Sect. 1.7 for details of OKBC), until now there have been no 
attempts to map OKBC to the MOF. Since the MOF is the dominant stan-
dard in the object-oriented-software-technology community (and even 
more widely), one of the benefits of having a MOF-compliant representa-
tion of Protégé ontologies is improved interoperability with other MDA-
based systems. Thus, the Protégé metamodel is a MOF-based definition of 
OKBC.

This metamodel is extensible and adaptable. This means that Protégé 
can be adapted to support a new ontology language by adding new meta-
classes and metaslots to the Protégé ontology. The introduction of these 
new metamodeling concepts enables users to add the necessary ontology 
primitives (e.g., the Protégé class has different features from the OWL 
class). In this way it can, for instance, support RDFS [Noy et al., 2000] and 
OWL [Knublauch et al., 2004]. 

As a support for sharing MOF-compatible models, Protégé has two back 
ends: UML [Protégé UML, 2004] and XMI [Protégé XMI, 2004]. These 
two back ends use the NetBeans MetaData Repository (MDR) (available 
from http://mdr.netbeans.org). NetBeans is an implementation of the Java 
Metadata Interface (JMI) specification [Dirckze, 2002]. JMI basically 
takes a MOF metamodel and generates Java interfaces that can be used to 
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access model instances at run time. These interfaces provide an alternative 
mechanism to access and build Protégé metamodels. Using those inter-
faces, it would be possible to plug Protégé into other tools, such as Java 
IDE NetBeans. Note also that the NetBeans MDR has features for export-
ing/importing XMI models, metamodels, and metametamodels. 

The Protégé XMI back end uses an XMI schema (see Sect. 4.7) compli-
ant with the Protégé MOF-defined metamodel shown in Fig. 6-11. In fact, 
this back end relies on features of the NetBeans MDR for importing and 
exporting XMI. One can find an example of a Protégé ontology repre-
sented in the Protégé XMI format in [Protégé XMI, 2004]. 

The Protégé UML back end exchanges UML v1.4 models (i.e., classes, 
and their relations), that is to say, models encoded in versions 1.1 and 1.2 
of UML XMI. The back end uses the following rules to perform mapping 
between UML models and its own MOF-compatible metamodel  [Protégé 
UML, 2004]: 

Each UML class is represented by one Protégé class of the same name, 
and with the same role (i.e., abstract or not abstract). 
The generated Protégé classes are arranged in an inheritance hierarchy 
as represented in the UML model (UML allows multiple inheritance). 
Since Protégé does not support concepts such as “interface”, all UML 
interfaces are handled as classes. 
Each attribute of a UML class is represented by a slot of a suitable type. 
The new slot will have the name of the attribute, unless this name has 
already been taken by a different slot (from another UML class) with a 
different type. In this case, the slot will be renamed according to the 
format <attributeName>@<className>, which ensures unique slot 
names. 
The new Protégé slots obtain their multiplicity (which allows multiple 
values or not) and their minimum and maximum cardinalities from the 
UML model. 
During export of UML primitive slots (e.g., int, string and symbol) are 
converted to simple attributes that are attached to all UML classes 
where the slot is used. Nonprimitive (instance) slots are translated into 
UML associations, whereby inverse slots are used to create bidirectional 
associations.
Metaclasses are recognized by means of the <<metaclass>> stereotype 
for classes. 

The developers of the Protégé UML backend also list a few limitations, 
namely: 
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Instances (i.e. UML objects and ontology class instances – individuals) 
cannot be shared.
UML associations of higher order (e.g., ternary relationships) have not 
been tested sufficiently. 

Fig. 6-11. Protégé MOF-compatible metamodel,based mainly on OKBC [Protégé 
XMI, 2004] 

Inherited Protégé slots/UML attributes (defined for parent classes) are 
not recognized;. 
Protégé does not provide real metamodel support for UML. Specifically, 
the Protégé metamodel (see Fig. 6-11) must be extended with specific 
concepts of UML, as has been done for various ontology languages 
(e.g., OWL and RDF) and knowledge representation languages (e.g., 
Jess and Algernon). For example, the StandardClass of the Protégé 
metamodel has been extended with the UMLClass in order to emphasize 
the differences between those two concepts. In fact, this is the same 
principle that Baclawski and colleagues [Baclawski et al., 2002a] ap-
plied when extending the UML metamodel to support the DAML+OIL 
language. Of course, here we have an opposite case, where the Protégé 
metamodel, which can be regarded as an ontology language, is extended 
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with concepts from the UML metamodel. Actually, a Protégé profile is 
created (somewhat like a UML profile). 

It is obvious from the above discussion that one can transform UML 
models into many different ontology languages thanks to the abundance of 
Protégé plug-ins and back ends. For instance, one can import a UML 
model represented in the UML XMI format into Protégé. Afterwards, one 
can either store that model in OWL or RDF(S) using the OWL plug-in, or 
transform it into a knowledge base format native to Jess (Java Expert Sys-
tem Shell; see http://herzberg.ca.sandia.gov/jess/), a rule-based engine, us-
ing JessTab (http://www.ida.liu.se/~her/JessTab/). The model can then be 
used in applications based on Semantic Web reasoners such as Jena 
[McBride, 2002] or OWLJessKB [Kopena & Regli, 2003]. In fact, this 
model-sharing scenario reflects the future capacities of ontology-driven 
software development in the context of the Semantic Web [Knublauch, 
2004].  

Regarding support for the present well-known UML tools, Protégé can 
share models directly with Poseidon for UML and MagicDraw, as they 
support versions 1.1 and 1.2 of UML. However, the IBM Rational Rose 
XMI add-in supports only XMI for UML v1.3, and thus direct model-
sharing with Protégé is not possible. As a way around this problem, the 
developers of the Protégé UML back end recommend users to first import 
IBM Rational Rose UML XMI models into Poseidon for UML, and then 
export them into XMI models. XMI models created in such a way can be 
imported by the Protégé UML back end. In this chapter, we do not give de-
tailed guidelines for sharing models between Protégé and UML tools, but 
detailed guidelines for Poseidon for UML, MagicDraw are provided in 
Chap. 12 in the form of a step-by-step procedure.  

6.2.2  DUET (DAML UML Enhanced Tool) 

A software tool called DUET [DUET, 2005] enables the importing of 
DAML ontologies into IBM Rational Rose and ArgoUML and the export-
ing of UML models into the DAML ontology language. The tool is actu-
ally implemented as an add-in for IBM Rational Rose (see Fig. 6-12) and 
as a plug-in for ArgoUML. It is freely available. 

This tool uses a quite simple UML profile that contains stereotypes for 
modeling ontologies (based on a UML package) and properties (based on a 
UML class). The mappings from the UML profile onto DAML shown in 
Table 6-2 are taken from [DUET, 2005]. We advise readers to look also at 
the mappings from the DAML language to the DUET UML profile in 



6.2  Ontology Development Tools Based on Software Engineering      165 

[DUET, 2005]. Note also that DUET uses an XSLT that transforms RDFS 
ontologies into equivalent DAML ontologies. In this way, an RDFS ontol-
ogy can be imported into UML tools through the DAML language.  

Fig. 6-12. A screen shot of the DUET IBM Rational Rose add-in 

DUET is the first UML tool extension that enables sharing of ontologies 
between an ontology language (i.e., DAML) and a UML tool in both direc-
tions. However, since this tool uses a UML profile-based approach, it is 
not aware of the semantics of UML concepts, as would be the case if it had 
been based on a metamodel. Instead, DUET just provides a graphical nota-
tion. Furthermore, this is a specialized DAML language tool, which can 
lead to the loss of some semantic information when one is dealing with 
other languages such as OWL, an official W3C specification. To the best 
of our knowledge, this tool has not been updated in the last two years (at 
the time of writing, October 2005). 

6.2.3  An Ontology Tool for IBM Rational Rose UML Models 

Xpetal is a freely available tool implemented in Java that transforms IBM 
Rational Rose models from the mdl format to RDF and RDFS ontologies 
[deVos & Rowbotham, 2001; deVos et al., 2001]. The tool has developed 
as a Java API that can be used from other applications or launched from a 
command prompt (see [XPetal, 2002] for details). The target RDFS ontol-
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ogy is constructed according to the UML-to-RDF mappings in the OMG 
DAF specification [OMG DAF, 2005]. Figure 6-13 shows a simple UML 
model of Petri nets that we developed as a starting point for creating a 
Petri net ontology. After transforming the model from the mdl format into 
the RDFS format, we imported it into Protégé.  

Table 6-2. Mappings from the DUET UML profile to the DAML language 
[DUET, 2005] 

UML DAML Discussion 

<<DAMLontology>> 
Package Ontology 

Packages stereotyped <<DAMLontology>> 
become DAML ontologies. Package name 
becomes Ontology URI.  

Class Class 

UML classes without stereotypes become 
DAML classes. UML class ownership of at-
tributes and aAssociations is not strongly 
represented in the DAML classes. No opera-
tion represented.  

<<DAMLproperty>> 
Class Property 

A UML class stereotyped <<DAMLprop-
erty>> becomes a DAML property or one of 
its subclasses; this subclass is determined by 
additional contextual information. 

<<DAMLdatatype>>
Class Datatype 

UML classes stereotyped <<DAM-
Ldatatype>> become DAML datatypes.  

Data type XML Schema or 
DAML datatype 

UML data types are generally mapped into 
XML Schema or user-defined DAML 
datatypes. 

Associations and 
roles

Object property and 
restriction

UML associations and roles map to object 
properties, and restrictions.  

Attributes Datatype property 
Attributes map to datatype properties and re-
strictions. Attributes can only have datatypes 
as their range. 

Generalization subClassOf or
subPropertyOf 

The mapping of a UML generalization de-
pends on the stereotype of the UML classes 
involved. 

Import Import Package imports map directly to ontology 
imports. 

Fully qualified names Namespaces 

Associations, roles, and classes from differ-
ent packages are referenced using their fully 
qualified names; the package component of 
these names is mapped into XML name-
spaces and imported ontologies. 

Comparing this tool with other related approaches discussed in this 
book, we have found that it has limitations similar to those that we men-
tioned when discussing Cranefield’s software (XSLTs). Specifically, the 
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tool uses only standard UML and does not provide a convenient solution 
for representing properties, their relations, advanced class restrictions, etc. 
In fact, the implementation of the tool is even more limited than that of 
Cranefield’s software, since it is oriented exclusively toward IBM Rational 
Rose, whereas Cranefield’s XSLT is applicable to any UML XMI docu-
ment and is independent of UML tools. 

XPetal

Fig. 6-13. Using XPetal to transform a UML model developed in IBM Rational 
Rose into an RDF Schema document that is then imported into Protégé 

6.2.4  Visual Ontology Modeler (VOM) 

The Visual Ontology Modeler (VOM) is a result of a collaborative work 
between Sandpiper Software Inc. and the Knowledge System Laboratory 
at Stanford University. To the best of our knowledge, this tool is not freely 
available. The tool extends IBM Rational Rose and enables ontology de-
velopment with user-friendly wizards that automate the creation of a logi-
cal model and related diagrams (see Fig. 6-14).  

The tool is based upon a UML profile for ontology development that is 
closely related to Protégé’s metamodel for ontologies and to Gruber’s 
Frame ontology [Gruber, 1993]. Apart from the use of well-known UML-
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based graphical notations for ontology development, VOM supports 
widely accepted Semantic Web ontology languages such as DAML+OIL 
and OWL. 

Fig. 6-14. The graphical user interface of the Visual Ontology Modeler (VOM), 
developed as an IBM Rational Rose add-in

Although this approach uses UML, we cannot say that is a real MDA-
based approach. Rather, it can be described as an MDA-compatible ap-
proach, since it is based not on an ontology metamodel, but on a UML pro-
file. Compatibility with the MDA is achieved through support for this 
UML profile and XMI. In fact, however, such an approach the use of ad-
vanced features of ontology languages (e.g., disjointWith, complementOf, 
and sameClassAs). The transformations between UML models and the 
supported ontology languages are built into the programming logic of the 
IBM Rational Rose add-in, so that only IBM Rational Rose can perform 
them. 

6.3 Summary of Relations Between UML and Ontologies 

In the course of various different approaches and tools for ontology devel-
opment using software engineering techniques, we have tried to emphasize 
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the state-of-the-art solutions to this problem. The goal of this section is to 
provide a concise summary of all the tools and approaches described in de-
tail in the previous two sections. We also aim to indicate the most impor-
tant differences between the two modeling approaches (ontologies and 
MDA) from the point of view of the most relevant languages (UML, 
OWL, and DAML+OIL). 

6.3.1  Summary of Approaches and Tools for Software 
Engineering-Based Ontology Development 

Table 6-3 summarizes the approaches analyzed in Sect. 6.1 and the tools 
presented in Sect 6.2. Specifically, this table reviews the MDA-based for-
mal definitions (i.e., metamodels) of the approaches and tools discussed, 
the kinds of model interchange format that they use (e.g., UML XMI), the 
proposals for implementing the mappings (e.g., XSLT), and the target on-
tology languages (e.g., OWL). Table 6-3 also indicates how each specific 
approach and tool implements the transformation between MDA-based 
languages and ontology languages. This information is relevant because it 
reveals whether a certain solution (i.e., software component) can be reused 
across different applications independently of the tool it was originally im-
plemented for. For example, XSLT-based solutions and XPetal have po-
tential for reuse. Finally, the table gives URLs for each approach or tool (if 
any exists) where one can find accompanying on-line resources. 

6.3.2  Summary of Differences Between UML and Ontology 
Languages

Here, we aim to summarize the most relevant incompatibilities between 
MDA-based approaches and ontology languages. As we have already men-
tioned Baclawski and colleagues gave the most comprehensive list of in-
compatibilities [Baclawski et al., 2002a] when they proposed an extension 
of UML for the DAML language, and our summary mainly relies on that 
study. In Table 6-4, we present an outline of the incompatibilities between 
ontology languages and UML given in [Baclawski et al., 2002a]. 
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Table 6-3. An overview of the present UML- and MDA-based ontology develop-
ment approaches and tools, and of the techniques that they apply to support trans-
formation to Semantic Web languages  

Approach Metamodel MDA sharing 
format 

Transformation 
mechanism

Target
language

Cranefield
[Cranefield, 2001a] Standard UML UML XMI XSLT RDFS, Java 

classes

Baclawski et al.
[Baclawski et al., 
2002a; Baclawski 
et al., 2002b]

Standard UML, 
UML profile, 
and
MOF-based
metamodel 

(not given – UML 
XMI and MOF 
XMI can be used) 

– DAML 

Falkovych et al.
[Falkovych et al., 
2003]

Standard UML UML XMI XSLT DAML+OIL 

AIFB OWL DL
[Brockmans et al., 
2004]

MOF-based
metamodel and 
UML profile 

(not given – UML 
XMI, and MOF 
XMI can be used) 

– OWL DL 

MOF-based
metamodel and 
UML profile 

ODM XMI 

UML XMI 
XSLT OWL 

GOOD OLD AI 
ODM
[Djuri  et al., 
2005a; Djuri  et 
al., 2005b] http://www.sfu.ca/~dgasevic/projects/UMLtoOWL/ 

Protégé
metamodel Protégé XMI 

Standard UML UML XMI 

Programmed 
(built-in

component) 

OWL, RDF(S), 
DAML+OIL, 
XML, UML 
XMI, Protégé 
XMI, … 

Protégé

http://protege.stanford.edu

UML profile IBM Rational Rose
Programmed 

(built-in
component) 

OWL,
DAML+OIL, 
RDFS

Visual Ontology 
Modeler (VOM)
[Ceccaroni & 
Kendall, 2003; 
Kendall et al., 
2002]

http://www.sandsoft.com/products.html 

UML profile IBM Rational 
Rose, ArgoUML 

Programmed  
(built-in

component) 
DAML+OIL 

DUET

http://codip.grci.com/wwwlibrary/wwwlibrary/DUET_Docs/ 

Standard UML IBM Rational Rose 
mdl files 

Programmed  
(reusable

component) 
RDFS

Xpetal

http://www.langdale.com.au/styler/xpetal/ 
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Table 6-4. Summary of incompatibles between UML and ontology languages, 
based mainly on [Baclawski et al., 2002a] 

One additional aspect is also very important when comparing UML and 
ontology languages. Most of the authors cited here refer to UML as a 
graphical (diagramming) notation [Cranefield, 2001b; Falkovych et al., 

Difference Description 

Monotonic  and non-
monotonic

Ontology languages are monotonic, whereas UML and ob-
ject-oriented languages are nonmonotonic. A system is 
monotonic if adding new facts can never cause previous 
facts to be falsified. 

Metalevels
Ontology languages do not have a rigid separation between 
metalevels. For example, in OWL Full, an instance of a 
class can be another class. 

Specialization/ 
generalization  

The UML generalization/specialization relation stimulates 
behavioral reuse, while the idea behind of this relation in 
ontology languages is set-theoretical. 

Modularity
Ontology languages do not have profiles, packages, or any 
other modularity mechanism supported by UML and ob-
ject-oriented languages.

Containers and lists

UML packages are not at the same metalevel as RDF con-
tainers (Bag, Seq, and Alt), and the presentation features of 
packages also make them unsuitable for representing RDF 
containers.

Property
A property is a first-class (independent) modeling element 
in ontology languages, while the UML notion of an asso-
ciation/attribute is not a first-class concept. 

Class constructors

Ontology languages have the ability to construct classes us-
ing boolean operations (union, intersection and comple-
ment) and quantifiers. In UML, there is no corresponding 
primitive.  

Cardinality constraints 

This incompatibility originates form the first-class nature 
of ontology properties. In ontology languages one can 
specify a cardinality constraint for every domain of a prop-
erty all at once, whereas in UML this must be specified  
separately for each association (end) belonging to the prop-
erty. 

Subproperties

Ontology languages allow one property to be a subproperty 
of another. UML has the ability to specify that one associa-
tion is a specialization of another, although this construct is 
rarely used. However, UML does not allow inheritance of 
class attributes. 

Namespaces 

While Semantic Web ontology languages use URIs to re-
late their constructs, UML has various ways of connecting 
its constructs (e.g., each class is a namespace of its attrib-
utes, which can be specified  further as having a private, 
protected, or public scope).  
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2003]. This can be explained by the fact that UML was initially developed 
to serve as a graphical language for software modeling. However, the no-
tion of UML models has evolved. UML models as defined in [Seidewitz, 
2003] and [Selic, 2003] correspond semantically to the notion of ontolo-
gies defined in [Hendler, 2001]. Therefore, one must have in mind this 
new concept of UML models when considering how to bridge gaps be-
tween ontologies and MDA modeling spaces. Of course, the UML graphi-
cal notation is still useful as a standardized and well-known syntax and can 
be also beneficial for the graphical representation of ontologies. 

6.3.3  Future Development  

Although the lessons learned from the approaches analyzed above are 
rather useful, none of them gives an ultimate solution to the problem of the 
use of the MDA for ontology development. Having realized this fact, the 
OMG issued an RFP for adopting a standardized architecture called the 
Ontology Definition Metamodel [OMG ODM RFP, 2003]. This RFP 
specifies that the new OMG standards have to contain the following ele-
ments:

a formal description of a new MDA-based ontology language called the 
Ontology Definition Metamodel; 
a related UML profile called the Ontology UML Profile; and  
the necessary transformations between the Ontology Definition 
Metamodel and the Ontology UML Profile, as well as transformations 
to contemporary Semantic Web languages (i.e., OWL).  

We believe that such a set of standards (promoting usage of all MDA 
concepts) provides us with considerable benefits when defining a meta-
modeling architecture and enables us to develop new MOF languages ca-
pable of expressing all concepts of ontology languages. In the following 
chapters, we describe in detail the present state of this OMG effort [OMG 
ODM RFP, 2005]. 



7. The MDA-Based Ontology Infrastructure 

Ontologies and the Model-Driven Architecture (MDA) are two modeling 
approaches that are being developed in parallel, but by different 
communities. They have common points and issues and can be brought 
closer together. Many authors have attempted to bridge the gaps and have 
proposed several solutions. The result of these efforts is the recent OMG’s 
initiative for defining an ontology development platform. 

7.1 Motivation 

To be widely adopted by users and to succeed in real-world applications, 
knowledge engineering and ontology modeling must catch up with trends 
in mainstream software. It must provide a good support in the form of 
software tools and integration with existing and upcoming software tools 
and applications must be eased, which will add value on both sides. To be 
employed in common applications, knowledge management by software 
must be taken out of laboratories and isolated high-tech applications and 
put closer to ordinary developers. This issue has been addressed in more 
detail in Cranefield’s papers [Cranefield, 2001a] [Cranefield, 2001b]. 

With the development of the Semantic Web initiative, the importance of 
ontologies is increasing rapidly. Semantic Web researchers are trying to 
make ontology development and ontologies in general closer to software 
practitioners [Knublauch, 2004]. However, ontologies have more rigorous 
foundation closely related to well-known paradigms in AI (e.g. description 
logic, semantic networks, and frames). Thus, most of the current Semantic 
Web ontologies have been developed in AI laboratories. Accordingly, we 
need to answer some questions such as: How can we increase the number 
of ontology developers? How can we motivate software engineering 
practitioners to develop and use ontologies? Can we use software 
development tools to develop ontologies? Therefore, we need some ways 
to integrate software development and ontologies.  

The integration of the ongoing software engineering efforts with the 
concept of the Semantic Web is not a new idea. Many researchers have 
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suggested using UML in order to solve this problem. However, UML is 
based upon an object-oriented paradigm, and has some limitations 
regarding ontology development. Hence, we can only use UML in the 
initial phases of ontology development. These limitations can be overcome 
using UML extensions (i.e. UML profiles) [Duddy, 2002], and other OMG 
standards, like the Model Driven Architecture. In addition, if we want to 
offer a solution consistent with the MDA proposals, we should also 
support the automatic generation of completely operational ontology 
definitions (e.g. in the OWL language) that are model driven [Selic, 2003]. 
Currently, the most important direction toward this goal is the one pursued 
by a dedicated research group within the OMG that is trying to achieve 
convergence of many different proposals for solutions to this problem 
[OMG ODM RFP, 2003]. The result of this effort should be a standard 
language (i.e. a metamodel) based on the MDA standards [Miller & 
Mukerji, 2003] and the W3C Web Ontology Language (OWL) 
recommendation [Bechhofer et al., 2004]. 

7.2 Overview 

MDA and its four-layer architecture provide a solid basis for defining 
metamodels of any modeling language, so it is a straightforward choice to 
define an ontology-modeling language in the MOF. Such a language can 
utilize the MDA’s support in modeling tools, model management and 
interoperability with other MOF-defined metamodels. The present 
software tools do not implement many of the concepts that are the basis of 
the MDA. However, most of these tools, which are mostly oriented toward 
the UML and M1 layer, are expected to be enhanced in the next few years 
to support the MDA. 

Currently, there is an RFP (Request for Proposal) within the OMG that 
is aimed at defining a suitable language for modeling Semantic Web 
ontology languages in the context of the MDA [OMG ODM RFP, 2003]. 
The authors of this book have made a proposal for such an architecture in 
accordance with this RFP. In this approach to ontology modeling within 
the scope of the MDA, which is shown in Fig. 7-1, several specifications 
need to be defined: 

the Ontology Definition Metamodel (ODM) 
the Ontology UML Profile – a UML Profile that supports UML notation 
for ontology definition 



7.2  Overview      175 

and the two-way mappings between: OWL and the ODM, the ODM and 
other metamodels, the ODM and the Ontology UML Profile and from 
the Ontology UML Profile to other UML profiles. 

Fig. 7-1. Ontology modeling in the context of the MDA and the Semantic Web 

The Ontology Definition Metamodel (ODM) should be designed to 
include the common concepts of ontologies. A good starting point for the 
construction of the ODM is OWL since that is the result of the evolution of 
existing ontology representation languages, and is a W3C 
recommendation. It is in the logical layer of the Semantic Web [Berners-
Lee et al., 1999], on top of RDF Schema (in the schema layer). 

In order to make use of the graphical modeling capabilities of UML, the 
ODM should have a corresponding UML profile [Sigel, 2001]. This profile 
will enable graphical editing of ontologies using UML diagrams as well as 
provide other benefits of using mature UML CASE tools. 

Both UML models and ODM models are serialized in XMI format so 
the two-way transformation between them can be done using XSL 
transformation. OWL also has a representation in the XML format, so 
another pair of XSL Transformations should be provided for two-way 
mapping between the ODM and OWL. For mapping from the ODM into 
other metamodels or from the Ontology UML Profile into other, 
technology-specific UML Profiles, additional transformations can be 
added to support usage of ontologies in the design of other domains and 
vice versa. 

Several official ([ODM DSTC, 2003; ODM Gentleware, 2003; ODM 
IBM, 2003; ODM Sandpiper&KSL, 2003]) and unofficial ([Djuri  et al., 
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2005a; Djuri , 2004]) proposals followed the RFP. The official proposals, 
proposed by IBM, Gentleware, etc. were joined together into a common 
submission [OMG ODM, 2004]. A revised joint submission followed in 
2005 [OMG ODM RFP, 2005]. The discussion of the ODM in this book is 
based mostly on the most recent, third revised submission [OMG ODM 
RFP, 2005], and the discussion of the UML profile is based mostly on 
[Djuri , 2004] and [Djuri  et al., 2005c]. 

7.3 Bridging RDF(S) and MOF 

Before we start on a more detailed description of the ODM, we must 
clarify the differences between metamodeling in the Semantic Web world, 
which is based on RDFS constructs, and in the object-oriented MDA, 
which is based on the MOF. Obviously, if we want to perform a 
transformation from the RDFS MS to MOF MS, we need to make 
transformation rules, which have to determine which target concept 
(defined in MOF) we should obtain from a source concept (defined in 
RDFS). The main task is to identify the most important differences and 
similarities between the main constructs in both spaces and decide how to 
overcome those differences. These concepts are briefly compared in Table 
7-1, which groups the most similar concepts from both spaces. 

Both good and bad news can be derived from this comparison. The good 
news is that there is a significant similarity: they are both a sort of entity-
relationship based world. In RDFS, rdfs:Class is a sort of entity, while 
rdf:Property is a sort of relation. In the MOF, Classifier represents an 
entity that is related to other entities via associations or attributes. 
Basically, a concept (at level M2 in the RDFS MS) that is modeled as an 
rdfs:Class (at level M3 in the RDFS space) becomes concept (at level M2 
in MOF space) that is a MOF Class (at level M3 in MOF space), a concept 
modeled as an rdfs:Property becomes an MOF Association or an MOF 
Attribute and so on. For Example, owl:Class (M2) is defined as an 
rdfs:Class (M3) in RDFS. In the MOF, it will be an OWLClass, an MOF 
Class. rdf:Property is also an rdfs:Class, so in the MOF MS it becomes an 
MOF Class RDFProperty. An example of an rdf:Property is 
rdfs:subclassOf; it should be transformed to an MOF Association 
RDFSsubClassOf.
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Table 7-1. A brief description of the basic MOF and RDF(S) metamodeling 
concepts 

MOF element Short description RDF(S) element Short description 

Element Element classifies the 
elementary, atomic 
constructs of models. It 
is the root element 
within the MOF Model. 

rdfs:Resource Represents all things 
described by RDF. 
The root construct of 
majority of RDF 
constructs.

DataType Models primitive data, 
external types, etc. 

rdfs:Datatype Mechanism for 
grouping primitive 
data.

Class Defines a classification 
over a set of object 
instances by defining 
the state and behavior 
they exhibit. 

Classifier An abstract concept that 
defines classification. It 
is specialized by Class, 
DataType, etc. 

rdfs:Class Provides an 
abstraction
mechanism for 
grouping similar 
resources.
In RDF(S), 
rdfs:Class also hava 
a function that is 
similar to a MOF 
concept of 
Classifier. 

Association Expresses relationships 
in the metamodel 
between pairs of 
instances of  Classes 

Attribute Defines a notional slot 
or value holder, 
typically in each 
instance of its Class. 

rdf:Property Defines a relation 
between subject 
resources and object 
resources.

TypedElement A TypedElement is an 
element that requires a 
type as part of its 
definition. A 
TypedElement does not 
itself define a type, but 
is associated with a 
Classifier. Examples are 
object instances, data 
values, etc. 

In RDF(S), any 
rdfs:Resource can be 
typed (via the 
rdf:type property) by 
some rdfs:Class 

The bad news is that corresponding concepts (rdfs:Class and Classifier 
and rdf:Property and Association or Attribute) have different natures. The 
concept of Class in RDFS (rdfs:Class) is not completely identical to the 
concept of Class that is defined in UML and the MOF. Every rdfs:Class is 
a set of resources, called a class extension. These resources are instances 
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of that class. Two classes can have the same class extension but still be 
different classes. Classes in RDFS are set-theoretic, while traditional 
object-oriented classes are more behavioral. Unlike an object-oriented 
class, an rdfs:Class does not directly define attributes or relations to other 
resources, and there is no concept similar to that of methods. Attributes 
and relations are defined as properties. 

In RDF, a property is a concept that represents a relation between a 
subject resource and an object resource. Therefore, it might look similar to 
the concept of attribute or association in the traditional, object oriented 
sense. However, the important difference is that rdf:Property is a stand-
alone concept; it does not depend on any class or resource as the  
associations or attributes are in the MOF. In ontology languages, a 
property can be defined even with no classes associated with it. That is 
why a property can not be represented as an ordinary association or 
attribute, its closest object-oriented relatives. 

7.4 Design Rationale for the Ontology UML Profile 

In order to customize UML for modeling ontologies, a UML profile for 
ontology representation, called the Ontology UML Profile, must be 
defined.

In developing our Ontology UML Profile we used thhhe experience of 
other UML profile designers (e.g., see [Juerjens, 2003]). Applying this 
experience to our case, we wanted our Ontology UML Profile to: 

offer stereotypes and tags for all recurring ontology design elements, 
such as classes, individuals, properties, complements, unions, and the 
like;
make specific ontology-modeling and design elements easy to represent 
in UML diagrams produced by standard CASE tools, thus keeping track 
of ontological information in UML models; 
enable ontological knowledge to be encapsulated in an easy-to-read 
format and offer it to software engineers; 
make it possible to evaluate UML diagrams of ontologies and indicate 
possible inconsistencies; 
support Ontology Definition Metamodel, hence to be able to represent 
all ODM concepts. 
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Currently, several different approaches to ontology representation in UML 
have been proposed. We note two major trends among them: 

Extending UML with new constructs to support specific concepts of 
ontologies (Property for example) [Baclawski et al., 2002a]. This 
approach is outdated. 
Using standard UML and defining a UML profile for ontology 
representation [Baclawski et al., 2002a]. This approach is followed in all 
recently proposed solutions. 

We believe that ontology representation in UML can be achieved 
without nonstandard UML extensions, and hence our approach belongs to 
the latter of the above two trends. In the Ontology UML Profile presented 
in this book, specific concepts of ontologies are annotated using the 
standard UML extension mechanisms described above. Models created 
with such a UML profile are supported by standard UML tools, since they 
do not add nonstandard concepts to UML, and thus they are UML models.  

The definition of a A UML profile in the context of the MDA four-layer 
metamodeling architecture means extending UML at the metamodel layer 
(M2). One can understand these extensions as a new language, but also 
understand UML as a family of languages [Duddy, 2002]. Each of these 
languages uses UML notation with the four UML extension mechanisms. 
Recent UML specifications enable the use of graphical notation for 
specifying stereotypes and tagged definitions [Kobryn, 2001]. Thus, all 
stereotypes and tagged values that are defined in this book can be shown in 
this way. 

The notation used for creation of stereotype in Ontology UML Profile 
(«OWLClass» stereotype) accommodates UML’s Class («metaclass»). 
Having this graphical notation for the UML extension mechanism can be 
useful for explaining certain relations between UML constructs and new 
stereotypes, and also between stereotypes themselves. 

Since stereotypes are the principal UML extension mechanism, one 
might be tempted to think that defining Ontology UML Profile is a matter 
of specifying few stereotypes and using them carefully in a coherent 
manner. In reality, however, it is much more complicated than that. The 
reason is that there are a number of fine details to take care of, as well as 
the existence of some conceptual inconsistencies between the MDA and 
UML that may call for alternative design decisions. 



8. The Ontology Definition Metamodel (ODM) 

There were four separate proposals for the ODM in response to the OMG’s 
ODM RFP [OMG ODM RFP, 2003] submitted by the following OMG 
members: IBM [ODM IBM, 2003], Gentleware [ODM Gentleware, 2003], 
DSTC [ODM DSTC, 2003], and Sandpiper Software Inc and KSL [ODM 
Sandpiper&KSL, 2003]. However, none of those submissions made a 
comprehensive proposal. For example, none of them proposed XMI 
bindings for the ODM, none of them proposed mappings between the 
ODM and OWL, and only IBM [ODM IBM, 2003] and Gentleware [ODM 
Gentleware, 2003] proposed an Ontology UML profile. Accordingly, the 
OMG partners decided to join their efforts, and the current result of their 
efforts together, is the ODM joint submission [OMG ODM, 2004]. A 
revised joint submission, which is the latest in the time of writingn, 
followed in August 2005 [OMG ODM RFP, 2005]. In this chapter we 
introduce the main concepts of that common initiative. 

8.1 ODM Metamodels 

To create a joint ODM, the submitters decided to organize it as a 
composition of several metamodels. We show the architecture of the 
current ODM submission (third revised submission) in Fig. 8-1. 

In order to support well-known Semantic Web ontology languages, the 
ODM has two separate metamodels, namely metamodels for OWL and 
RDFS. These languages are W3C standards which form a basis for the 
Semantic Web, thus are the central part of the ODM. Other metamodels 
have two-way mappings to and from RDFS/OWL. This means that they 
are also used as a mediator between yet other metamodels.  

Since the ODM needs an expressive logic language that can be used on 
the Semantic Web to describe string-based expressions, the ODM contains 
the Common Language (CL) metamodel. Apart from W3C ontology 
languages, the ODM supports other ontology language standards (ISO 
standards) by defining a Topic Maps (TM) metamodel. The central 
metamodel in the joint submission (the one from 2004) was a Description 
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Logics (DL) metamodel since most of the current ontology languages (e.g. 
OWL) are based upon some of the DL classes. The role of this metamodel 
was to mediate all metamodels defined in the ODM. However, the next 
submission (2005.) moved this metamodel somewhat to the side, leaving it 
as a nonnormative metamodel, while the central role in the ODM is now 
played by RDFS and OWL metamodels. Finally, to provide connection 
with many existing systems based on databases, the ODM defines an 
Entity Relationship (ER) metamodel. 

Fig. 8-1. The ODM Metamodels

Taking into account the importance of UML, the ODM developers want 
to create mappings between the standard UML metamodel and the RDFS 
and OWL metamodels, and hence establish a way to employ present UML 
models in ontology development. Furthermore, these developers define 
Ontology UML Profile (OUP) using standard UML extension 
mechanisms. The purpose of OUP is to enable the use of the standard 
UML graphical notation for developing ontologies. 
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8.2 A Few Issues Regarding the Revised Joint 
Submission

Before we start a more detailed explanation of the OMG’s Ontology 
Definition Metamodel, we shall briefly discuss a few issues that might be 
interesting in relation to the upcoming version 2 of the MOF standard.  

The current ODM proposal was tailored with respect to the ECore 
metamodel, the heart of Eclipse Modeling Framework (EMF). While 
ECore is similar to the MOF (particularly EMOF) there are differences. 
ECore is much simpler and is targeted toward implementation in CASE 
tools. Therefore, there might be some minor inconsistencies in the ODM 
with version 2 of the MOF standard. As the ODM and MOF version 2 are 
still works in progress, some of these issues, if not all of them are probably 
going to be resolved in the final version. In this section, we shall mention 
them briefly. Note that we have done some minor changes to the version of 
the ODM presented in this book regarding these issues, but those changes 
do not have any impact on the essence of the discussion. Many of these 
minor flaws that we are going to mention probably arise from the fact that 
there are many tools that operate with MOF standards, and the proposals 
have been constructed using CASE tools (EMF for example), whichall 
have their non-standard way of handling some things. 

There are many associations having the same name in the metamodel 
proposal that reside in the same package. An example of such a situation is 
that two different associations in the DL metamodel both have the same 
name – contains. However, MOF specification clearly states that the name 
of any element within the same namespace must be unique. A solution 
could be found by renaming one of these associations, or by refactoring by 
extracting the class. The first solution seems less intrusive for this 
discussion, but the second is more elegant from the point of view of 
software engineering.

Many associations were left unnamed in the ODM joint submission. The 
MOF specification states that every Type must be named, and Association 
inherits Type, so this condition must be fulfilled. Also note that the UML2 
Infrastructure specification allows unnamed Types but EMOF adds a 
constraint that every Type must be named. In this discussion, we have 
added names to associations, but this problem can be also solved with 
CASE tools, which can generate random names. However, random names 
are not convenient if a human has to work with them. Would it be pleasant 
to have to work with associations named “mnrt90490789” or 
“FF0AD3458B0BB”?
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Associations model relationships between classes. If classes are subjects 
and objects, associations should represent verbs. Thus, their names should 
be verbs. A good rule would be that the ODM should name associations 
after the names of the properties that are their counterparts in RDF(S), 
even if they are not verbs. In our opinion, if an association does not have a 
direct RDFS counterpart, a verb should be used for its name. In the joint 
submission, most of the names of properties were used for naming 
association ends, not associations. 

8.3 The Resource Description Framework Schema 
(RDFS) metamodel 

Resource is one of the basic RDFS concepts; it represents all things 
described by RDF and OWL. It may represent anything on the Web: a 
Web site, a Web page, a part of a Web page, or some other object named 
by a URI. Compared with the concepts of ontologies, it could be viewed as 
a root concept, the Thing. In the RDFS MS, rdfs:Resource is defined as an 
instance of rdfs:Class. Since we use the MOF as a meta-metamodeling 
language, this concept will be defined as an instance of MOF Class named 
RDFSResource. IThis is the root class of most of the other concepts from 
RDFS and OWL metamodels that will be described: RDFSClass, 
RDFSProperty, RDFStatement etc. The hierarchy of concepts in the RDFS 
metamodel is shown as a class diagram in Fig. 8-2.  

Fig. 8-2. RDFS metamodel - hierarchy of concepts 

Other class diagrams depict these concepts in more detail. Note that, since 
the RDFS is self-defined and rdfs:Class inherits rdfs:Resource, in the 
RDFS MS rdfs:Resource is an instance of itself. However, in the MOF 
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MS, RDFSResource is an instance of MOF Class, not RDFS Resource, 
because the MOF is a meta-metamodel, not RDFS. 

Among shown concepts, the most important ones are 

RDFSResource,
RDFSClass,
RDFProperty, and
RDFStatement.

These are the basis for forming subject-predicate-object triples, such as 
“this section–describes–RDFS metamodel”. 

Figure 8-3 shows the basic characteristics of the RDFSResource and 
RDFSClass concepts. RDFSResource has three attributes, all of String 
type, which are primarily intended to identify an instance of 
RDFSResource (and all concepts that inherit it): 

localName, for the name of the resource, unique within a namespace, 
namespace, for a namespace in which a resource resides and for 
grouping similar resources, 
uri, (unique resource identifier) which may be constructed from the 
namespace and localName and vice versa. 

The RDFS specification also defines that an rdfs:Resource can have 
comments and labels attached. As these characteristics are described in 
RDFS MS using rdf:Property instances, namely rdf:comment and rdf:label, 
in MOF MS we model them using MOF Association concept. On the other 
end of these associations is RDFSLiteral, a concept that is used to 
represent simple data, such as numbers, text etc. Therefore, using these 
two associations, we can add various textual, numeric or other comments 
and labels to our data. One special kind of RDFSLiteral is 
RDFXMLLiteral, which represents XML textual data. 

RDFS also defines a concept that is used for grouping similar resources 
– rdfs:Class. In an MOF-based metamodel, it can be represented using the 
MOF Class named RDFSClass, which, following the specification, inherits 
RDFSResource. This is determined by RDFtype (rdf:type property from 
RDFS MS). An RDFSResource can have many types, and multiple 
RDFSResource instances can have the same type. RDFSsubClassOf 
models inheritance in the M1 layer, ontological inheritance, among various 
instances of RDFSClass. An RDFSClass instance can inherit many other 
RDFSClass instances and can be inherited by many other RDFSClass 
instances, forming complex inheritance hierarchies. Do not confuse 
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RDFSsubClassOf with generalization between RDFSClass and 
RDFSResource. It is the same property in RDFS MS because RDFS is 
both metamodel and meta-metamodel, but in MOF MS, we use 
generalization association to model inheritance in the M2 layer, not 
RDFSsubClassOf.

Fig. 8-3. RDFSClass and RDFSResource

The next important concept in the RDFS metamodel that needs to be 
explained is the RDFStatement, shown in Fig. 8-4. A statement is a 
subject-predicate-object triple that expresses some fact in a way similar to 
the way facts are expressed in the English language. The fact that Bob 
Marley was Jamaican, is expressed through a statement, whose subject is 
“Bob Marley”, whose predicate is “was”, and whose object is “Jamaican”. 
Following the definition of rdf:Statement definition from the RDFS MS, in 
the MOF MS, a statement is modeled as an MOF Class RDFStatement. 
The subject, predicate and object of an RDFStatement are determined 
using the associations RDFsubject, RDFobject and RDFpredicate, which 
are the counterparts in the MOF MS of the properties rdf:subject, 
rdf:object and rdf:predicate. 
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Fig. 8-4. RDFS Statement 

From the definition of RDFStatement, we can see that all three 
associations, subject, object and predicate, link RDFStatement to 
RDFSResource. This design is wide open to any kinds of statement, even 
one that does not mean anything, for example “Bob Marley”-“Cuba”-
“Jamaican”. Therefore, the predicate should usually be a resource that 
represents a verb, such as “be” or “memorize”, or some characteristic of a 
resource, like “name”. In the RDFS MS, such a resource is an rdf:Property, 
a concept that represents a type of relationship between resources. 

in the M2 layer, RDFS defines two properties, rdfs:domain and 
rdfs:range that connect an rdf:Property with an rdfs:Class, making it 
possible to distinguish various types of relations between various types of 
resources in the M1 layer. In the MOF MS, RDFS metamodel represents a 
property using MOF Class named RDFProperty, a descendant of 
RDFSResource, as shown in Fig. 8-5. 

Fig. 8-5. RDFSProperty 
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RDFSdomain and RDFSrange associations represent corresponding 
rdfs:domain and rdfs:range relations in the RDFS MS. RDFSdomain 
determines which types of resources can be at the “source” end of a 
relation and RDFSrange determines the type of the “destination” end. 
Another difference between properties and their object-oriented 
counterparts is that properties can form complex hierarchies, just as classes 
do. This is modeled by RDFSsubPropertyOf association, a counterpart in 
th MOF MS of rdfs:subPropertyOf in the RDFS MS. 

Fig. 8-6. RDFS Containers 

There is often a need to group resources not by type, but by some 
arbitrary similarities. For example, we could make a group frrrom all 
authors of this paper, or all basketball teams that are members of the NBA 
league. For such cases, RDFS uses rdfs:Container. In the MOF MS, we 
model this as an MOF Class RDFSContainer, which inherits 
RDFSResource (Fig. 8-6). RDFSContainer also has a few descendants 
defined: RDFBag (a group of unordered resources), RDFAlt (for resources 
that are alternative to each other) and RDFSeq (a group of resources in 
which order is important). RDFSmember association models the 
containment of one RDFSResource in another RDFSResource. 

RDF containers are open in the sense that the core RDF specifications 
define no mechanism to state that there are no more members. The RDF 
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Collection vocabulary of classes and properties can describe a closed 
collection, i.e. one that can have no more members. A collection is 
represented as a list of items, a representation that will be familiar to those 
with experience of Lisp and similar programming languages. RDFList 
modeled in the MOF MS is shown in Fig. 8-7. An RDFfirst relation 
connects an RDFSList with its first element, which can be any 
RDFSResource. RDFSrest connects an RDFSList with a sublist containing 
other elements, recursively forming the order of all elements. 

Fig. 8-7. RDFS Collections 

In Fig. 8-8 we can see a few properties from RDFS modeled in the MOF 
MS as associations: RDFSseeAlso, RDFSisDefinedBy and RDFvalue. 
These properties are also known as “utilities”. RDFSseeAlso points to 
another resource that could be useful to look at. RDFSisDefinedBy points 
to another RDFSResource that defines the first one. RDFvalue association 
is used for describing structural values. 

Fig. 8-8. RDFS Utilities 

Ontology, shown in Fig. 8-9, is a concept that is not explicitly defined in 
RDFS (modeled in RDFS MS). Ontology is a concept similar to the 
concept of a Package in UML. It is a concept used for grouping other 
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concepts that belong to similar domains. Containment is denoted by 
“contains” association, which links one Ontology to one or more 
RDFSResource.

Fig. 8-9. The Ontology concept 

Giving graphical diagrams here as an example of the use of an RDFS 
metamodel would not be easy, because RDF(S) does not have a standard 
graphic representation. A plain UML diagram given here would not 
represent concepts from RDFS metamodel, but concepts from UML 
metamodel, which are not the same thing. Fortunately, in the next section 
we shall define a UML profile for modeling RDFS concepts using a 
standard UML extension mechanism. In that section, we shall provide a 
few examples of RDFS and OWL ontologies. 

8.4 The Web Ontology Language (OWL) Metamodel 

The Web Ontology Language is built on top of RDF(S), using RDF(S) as 
both a meta-metamodel (M3) and a metamodel that is a base for extension 
(M2). In the MOF MS, the first dependency (the use of RDFS as a meta-
metamodel) is replaced by using the MOF as a meta-metamodel. The 
second dependency means that the concepts of the OWL metamodel 
extend the concepts of the RDFS metamodel. Figure 8-10 shows the 
hierarchy of OWL concepts – we can see that most OWL concepts inherit 
the RDFS concepts RDFSResource, RDFProperty and RDFClass. 
RDFSClass is a base concept of the OWL concepts that represents classes 
(OWLClass, OWLRestriction and OWLDeprecatedClass), RDFProperty is 
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inherited by many concepts that represent properties in OWL 
(OWLObjectProperty, OWLDatatypeProperty and so on). 

A small difference compared to OWL in the RDFS MS is that 
OWLOntology inherits Ontology, which is not defined in RDF(S). There 
are also some other concept in OWL metamodel that are not explicitly 
defined in the OWL language (RDFS MS), and their names are not 
prefixed with “OWL” in this metamodel. 

Fig. 8-10. The OWL Hierarchy

Classes provide an abstraction mechanism for grouping resources with 
similar characteristics. Like RDF classes, every OWL class is associated 
with a set of individuals, called the class extension. As OWL in many 
cases refines the concept of a class, it needs to model it separately, for 
example to inherit RDFSClass together with a new concept, OWLClass. 
Fig. 8-11 shows how OWLClass is modeled. 

OWLClass inherits RDFSClass. Because OWL Full fully supports 
RDFS, we can also use the RDFSClass concept if we model using OWL 
Full. However, it is more convenient to use the OWLClass concept, 
because it is valid in OWL Lite and OWL DL also. 

OWLClass is a set of individuals, which are modeled in OWL with the 
owl:Thing concept. Thanks to the fact that OWLClass extends RDFSClass, 
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it also extends the associations of RDFSClass’ from the RDFS metamodel. 
One of these associations is RDFtype, which enables various 
RDFSResources to state that some OWLClass is their type. Other 
associations in which RDFSClass takes part, among which 
RDFSsubTypeOf is one of the most important, are also inherited. 

Fig. 8-11. OWLClass

Besides defining a class by name and connecting individuals using 
RDFtype association, classes can be defined in OWL in several other 
ways. Enumeration is defined by exhaustively enumerating its instances so 
OWLoneOf association is provided for building classes by enumeration. 
As a class can be constructed in OWL as a complement of another class or 
as a union or intersection of other classes, OWLcomplementOf, 
OWLunionOf, and OWLintersectionOf associations are provided. These 
associations and the multiplicities of their association ends are also shown 
in Fig. 8-11. 

The OWL metamodel also defines two associations, which are 
counterparts of properties of the OWL language: OWLequivalentClass and 
OWLdisjointWith. OWLequivalentClass asserts that two classes have the 
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same class extension, and OWLdisjointWith asserts that two class 
extensions do not have any common individual. 

Fig. 8-12. OWL Properties 

OWLRestriction is a special kind of OWLClass, and thus it inherits the 
OWLClass concept. It is not a “real” class, but a concept that enables 
constraints in OWL. Before we describe how restrictions are modeled, we 
should looook at the details of the concepts that model properties in OWL, 
because OWLRestiction is a concept tightly connected to properties. 

OWL refines the concept of rdf:Property by distinguishing two basic 
kinds of properties, owl:ObjectProperty and owl:DatatypeProperty. Recall 
from our discussion of the RDFS metamodel that RDFProperty has a 
domain and range that could both be RDFSClass and that RDFSDatatype 
is a subclass of RDFSClass. This means that RDF does not distinguish 
relations between classes from relations between data types. The OWL 
metamodel, following the OWL language derived from the RDFS MS, 
introduces two distinct types of properties: OWLObjectProperty (a 
relationship between two OWLClasses) and OWLDatatypeProperty (a 
relationship between OWLClass and RDFSDatatype). 
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The OWL metamodel in the joint submission includes the abstract MOF 
Class Property (see Fig. 8-12) in which is not included in the standard 
OWL language as a common superclass of OWLObjectProperty and 
OWLDatatypeProperty. This concept was introduced to solve the 
impedance mismatch between the RDFS and MOF concepts. In particular, 
MOF Association is dependent on the classes that are at its ends, and a 
class has to “know” which association ends it hosts. However, adding 
OWLequivalentProperty association directly to RDFProperty, as it is 
defined in OWL’s owl:equivalentProperty would imply a difference in the 
RDFS metamodel when it is used alone and when it is used as a base of the 
OWL metamodel. 

Properties in OWL cannot have a Datatype as a domain, only as a range. 
That is why inverseOf association is applicable only to 
OWLObjectProperty. OWL also defines several other refined kinds of 
properties, namely owl:FunctionalProperty for relationships that have 
functional characteristics, owl:TransitiveProperty for transitive 
relationships, owl:SymmetricProperty for symmetric relationships and 
owl:InverseFunctionalProperty. These types of properties are represented 
in the MOF MS as a Property or OWLObjectProperty with suitable 
attributes with names analogous to those in the RDFS MS. 

Fig. 8-13. OWLRestriction

OWLRestriction, shown in Fig. 8-13, is an anonymous class of all 
individuals that satisfy certain restrictions on their properties. Obviously, it 
is an MOF counterpart of the owl:Restriction concept from the RDFS MS. 
OWLonProperty association connects OWLRestriction and a property on 
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which that restriction is applied. There are two kinds of restrictions on 
properties: value constraints and cardinality constraints. A value constraint 
puts constraints on the range of the property when applied to this particular 
class description. Value constraints are modeled using OWLhasValue, 
OWLsomeValuesFrom and OWLallValuesFrom associations. A 
cardinality constraint puts constraints on the number of values a property 
can take, in the context of this particular class description. Cardinality 
constraints are modeled using OWLminCardinality, OWLcardinality and 
OWLmaxCardinality associations. 

We have mentioned that OWL makes a significant distinction between 
named individuals (“objects”), and plain data values. In the OWL 
metamodel, individuals are modeled using the Individual concept, which is 
shown in Fig. 8-14. As Individual inherits RDFSResource, it also inherits 
all its associations with other concepts, of which one of the most important 
is RDFtype, which connects RDFSResource with its type, RDFSClass. In 
the case of Individual, RDFtype association has a constraint that the other 
end has to be an OWLClass. OWL also introduces properties that are used 
to state that some individuals are the same as (owl:sameAs) or different 
from (owl:differentFrom) others. In the OWL metamodel these properties 
are modeled as the associations OWLsameAs and OWLdifferentFrom. 

Connecting many instances ofIndividual to a number of individual 
owl:differentFrom (or OWLdifferentFrom in the MOF MS) connections 
would overcrowd the model. That is why OWL introduces the 
owl:AllDifferent class and owl:distinctMembers property to connect that 
class with all individuals that are different from each other. In the OWL 
metamodel, this class and property are modeled as the OWLAllDifferent 
MOF Class and OWLdistinctMembers MOF Association. 

A data range represents a range of data values. It can be either a 
datatype or a set of data values. Data ranges are used to specify a range of 
datatype properties. They are modeled as the OWLDataRange MOF Class 
(see Fig. 8-15), which is a descendant of RDFSDatatype, connected with 
RDFSLiteral via the OWLoneOf association. 

OWL groups similar concepts together in an ontology using the 
owl:Ontology concept. This concept does not extend any other concept 
explicitly, but as RDFS specifies that everything can be a resource, it is an 
owl:Ontology as well. However, joint submission defines OWLOntology 
as a descendant of Ontology, which is not an RDFSResource. You can see 
the details of OWLOntology and its associations in Fig. 8-16. It includes 
OWLimports association, which enables the use of data from other 
ontologies in an ontology that can import them. Other associations, 
OWLbackwardCompatibleWith, OWLincompatibleWith, and 
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OWLpriorVersion are intended to support different versions of an 
ontology. 

Fig. 8-14. Individuals 

An OWLversionInfo statement generally has a string giving information 
about the version as its object, for example RCS/CVS keywords. An 
OWLpriorVersion statement contains a reference to some other ontology. 
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This identifies the specified ontology as a prior version of the containing 
ontology. An OWLbackwardCompatibleWith statement also contains a 
reference to another ontology. This identifies the specified ontology as a 
prior version of the containing ontology, and indicates further that it is 
backward compatible with the containing ontology. In particular, this 
indicates that all identifiers from the previous version have the same 
intended interpretations in the new version. An OWLincompatibleWith 
statement contains a reference to another ontology. This indicates that the 
containing ontology is a later version of the referenced ontology, but is not 
backward compatible with it. 

Fig. 8-15. OWLDataRange

Figure 8-17 shows the OWL Utilities – concepts that are not part of the 
base of OWL but are intended for version control, deprecated concepts, 
etc. Deprecation is a feature commonly used in versioning software (for 
example, see the Java programming language) to indicate that a particular 
feature has been preserved for backward-compatibility purposes, but may 
be phased out in the future. Deprecating a term, means that the term should 
not be used in new documents that commit to the ontology. This allows an 
ontology to maintain backward-compatibility while phasing out an old 
vocabulary. In the OWL language both classes and properties can be 
deprecated. OWL DL allows annotations on classes, properties, individuals 
and ontology headers. That is why OWLAnnotationProperty is included in 
the OWL metamodel. An example of annotation property is the dc:creator 
property defined in the DC vocabulary (http://dublincore.org/) if one wants 
to use it to annotate who the creator of an OWL ontology concept is. 

This support for annotations, ontology headers, importing, and version 
information in the OWL metamodel is the first comprehensive attempt to 
cover all those features in the OWL language. In previous similar 
solutions, only IBM’s submission to the ODM RFP [ODM IBM, 2003] 
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had considered such features, and hence that submission was used as a 
basis for the present OWL metamodel. 

Fig. 8-16. OWLOntology

Fig. 8-17. OWL Utilities 



8.4  The Web Ontology Language (OWL) Metamodel      199 

The OWL metamodel together with the RDFS metamodel forms the 
basis for ontology development in the Model Driven Architecture. The 
main advantage is that it is compatible with the Web Ontology Language, 
which is one of the key technologies of the Semantic Web. 



9. The Ontology UML Profile 

UML profile is a concept used for adapting the basic UML constructs to a 
specific purpose. Essentially, this means introducing new kinds of 
modeling elements by extending the basic ones, and adding the new 
elements to the modeler’s repertoire of tools. Also, free-form information 
can be attached to the new modeling elements. The Ontology UML Profile 
extends UML in a standard way to enable ontology modeling in the widely 
used UML modeling tools. 

9.1 Classes and Individuals in Ontologies 

The Class is one of the most fundamental concepts in the ODM and the 
Ontology UML Profile. As we noted in the discussion about the essential 
concepts of the ODM, there are some differences between the traditional 
UML Class or the concept of a Class in object-oriented programming 
languages and an ontology class as it is defined in OWL (owl:Class). 
Fortunately, we are not trying to adopt UML as a stand-alone ontology 
language, since that might require changes to the basic concepts of UML 
(Class and others). We only need to customize UML as a support to the 
ODM.

In the ODM, the concepts that represent classes, i.e. RDFSClass, 
OWLClass, AllDifferent and Restriction are modeled using the MOF Class 
concept. These constructs in the Ontology UML Profile are inherited from 
the UML concept that is most similar to them, UML Class. However, we 
must explicitly specify that they are not the same as UML Class, which we 
can do using UML stereotypes. An example of Classes modeled in the 
Ontology UML Profile is shown in Fig. 9-1. 

RDFSClass and OWLClass, ontology classes identified by a class 
identifier have the stereotype «RDFSClass» or «OWLClass», 
OWLAllDifferent has the stereotype «OWLAllDifferent» and 
OWLRestriction has the stereotype «OWLRestriction». 
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Fig. 9-1. Class Diagram showing relations between Ontology Classes and 
Individuals in the Ontology UML Profile 

Figure 9-1 shows various types of ontology classes modeled in UML. 
The «OWLClass» Person is an example of an owl:Class class that is 
identified by a class identifier, while TheRollingStones is an enumeration. 
There is a class “All non-members of The Rolling Stones” that represents 
the complement of The Rolling Stones – all individuals whose type is not 
The Rolling Stones belong to this class. AllDifferent is an auxiliary class 
whose members are different individuals. Also shown is the «OWLClass» 
Human and the «equivalentClass» Dependency, which means that Person 
and Human are classes that have the same class description (i.e. all Persons 
are Humans and vice versa). Note that in object-oriented modeling it 
would be highly unusual to model The Rolling Stones as a class rather than 
as an object of type RockNRollBand. However, ontology classes are not 
behavioral, but sets, and how would you call a set of all members of The 
Rolling Stones? Obviously – The Rolling Stones. 
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Fig. 9-2. Constructing union and intersection in Ontology UML Profile 

In the ODM, an instance of OWLClass is an OWLThing, an individual. 
An instance of RDFSClass is an RDFSResource, which means that it can 
be anything. In UML, an instance of a Class is an Object. OWLThing and 
UML Object have some differences, but they are similar enough, and so in 
the Ontology UML Profile, an OWLThing is modeled as a UML Object, 
which is shown in Fig. 9-1 and Fig. 9-2. The stereotype of an object must 
match the stereotype of its class («OWLClass» in this case). The 
«OWLThing» stereotype could be added as well. We can state that an 
individual has a type in three ways: 

By using an underlined name of an individual followed by “:” and its 
«OWLClass» name. For example, Mick Jagger:Person is an individual 
(OWLThing) whose type is Person. This is the usual UML method of 
stating an Object’s type.  
By using a stereotype «RDFStype» between an individual and its 
«OWLClass». This method is also allowed in standard UML using the 
stereotype «instanceOf». For example, Keith Richards has «RDFStype» 
dependency link to Human, which is equivalent with Person 
(«OWLequivalentClass»). Thus, he is also a Human, just like other 
members of The Rolling Stones. 
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Indirectly, through logical operators on «OWLClass». If an 
«OWLClass» is a union, intersection or complement, it is a class of 
individuals that are not explicitly defined as instances of it. For 
example, in Fig. 9-2 Bob Dylan is not explicitly defined as a member of 
the Beatles and Wilburys union class, but it is its member since he is a 
member of Travelling Wilburys, which is connected with the Beatles 
and Wilburys through an «OWLunionOf» connection. A similar thing 
applies to Jeff Lynne and Electric Light Wilbury Class. Since he is a 
member of Travelling Wilburys and The Electric Light Orchestra, he is 
a member of Electric Light Wilbury, an «OWLintersectionOf». 

Again, do not confuse an instance-of relationship between a UML 
Object and a UML Class or between an OWLThing and an OWLClass (all 
in the M1 layer) with the relationship between, for example, an instance of 
OWLClass (M1) and an OWLClass concept (M2). The later is a linguistic 
instance-of relation, an instance-of relation between concepts from 
different layers (the definition of OWLClass and a concrete OWLClass, 
for instance Tom Petty & the Heartbreakers). The ontological instance-of 
relation is an instance-of relation between concepts that are in the same 
linguistic layer, but in different ontological layers (for instance, 
«OntClass» Person and the object George Harrison are at different 
ontological layers since Human is the class (type) of George Harrison). For 
a more detailed discussion of ontological versus linguistic instance-of 
relations, see [Atkinson & Kühne, 2003]. 

9.2 Properties of Ontologies 

The concept of Property is one of the most unsuitable concepts in 
ontologies for model with object-oriented languages and UML. The 
problem arises from a major difference between Property and the UML 
concepts similar to it, Association and Attribute. Since Property is an 
independent, stand-alone concept, it can not be modeled directly with 
Association or Attribute, which cannot exist on their own. Some authors 
[Baclawski et al., 2002a] have suggested extending UML with new 
constructs to support a stand-alone Property, introducing aspect-oriented 
concepts into UML. In our view, this solution is rather extreme, since it 
demands non-standard changes to UML. 

Since Property is a stand-alone concept it can be modeled using a stand-
alone concept from UML. That concept could be the UML Class’ 
stereotype «RDFProperty», «OWLObjectProperty», or 
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«OWLDatatypeProperty». However, Property must be able to represent 
relationships between Resources (Classes, Datatypes, etc. in the case of 
UML), which a UML Class alone is not able to do. If we look at the 
definition of a Property in the ODM more closely, we can see that it 
accomplishes representation of relations through its range and domain. We 
have found that in the Ontology UML Profile, the representation of 
relations in accordance with the ODM model should be modeled with the 
UML Association’s or UML Attribute’s stereotypes «domain» and 
«range». In order to increase the readability of diagrams, the «range» 
association is unidirectional (from a Property to a Class). 

Fig. 9-3. Ontology Properties shown in a UML Class diagram 

OWL defines two types (subclasses) of Property – OWLObjectProperty 
and OWLDatatypeProperty. OWLObjectProperty, which can have only 
individuals in its range and domain, is represented in Ontology UML 
Profile as the Class’ stereotype «OWLObjectProperty». 
OWLDatatypeProperty is modeled with the Class stereotype 
«OWLDatatypeProperty». 

An example of a Class Diagram that shows ontology properties modeled 
in UML is shown in Fig. 9-3. It contains four properties: two 
«OWLDatatypeProperty»s (name and socialSecurityNumber) and two 
«OWLObjectProperty»s (play and colleague) UML Classes. In 
cooperation with «RDFSdomain» and «RDFSrange» UML Associations, 
or «RDFSdomain» and «RDFSrange» UML Attributes, these properties 
are used to model relationships between «OWLClass» UML Classes. 
Tagged values describe additional characteristics, for example, the 
«OWLObjectProperty» colleague is symmetric (if one Person is a 
colleague of another Person, the other Person is also a colleague of the first 
Person) and transitive (if the first Person is a colleague of the second 
Person, who is a colleague of the third Person, the first and the third 
Person are colleagues). 
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There is an important issue that must be clarified with respect to this 
diagram. In UML, relations are represented by Associations (represented 
graphically as lines) or Attributes, which looks nice and simple. Ontology 
UML Profile diagrams may look overcrowded, since each relationship 
requires a box and two lines to be properly represented. The solution used 
here uses standard graphical symbols, but UML allows custom graphical 
symbols for a UML profile. For example, a custom graphical symbol for a 
Property could be a tiny circle with lines, which reduces the space required 
on a diagram. Additional custom settings, such as distinct colors for 
«OWLClass» (green), «OWLObjectProperty» (orange) and 
«OWLDatatypeProperty» (orange), can be used to increase the readability 
of diagrams. For the sake of readability, the UML profile that we have 
used allows two styles of presentation of the domain and range of an 
«OWLDatatypeProperty». An example of the first style (a UML Class 
with two UML Associations) is socialSecurityNumber, and an example of 
the second one (a Class with Attributes as its domain or range) is name. 
The second style is allowed only for an «OWLDatatypeProperty» whose 
range multiplicity is equal to or less than one. So, if an 
«OWLDatatypeProperty» has a range multiplicity of 0..1 or 1, the style 
using Attributes can be used to reduce the clutter. 

9.3 Statements 

OWLStatement is a concept that represents concrete links between ODM 
instances – individuals and data values. In UML, this is done through Link 
(an instance of an Association) or AttributeLink (an instance of an 
Attribute). A Statement is a kind of instance of a Property, which is 
represented by a UML Class stereotype («OWLObjectProperty» or 
«OWLDatatypeProperty»). Since an instance of a Class in UML is an 
Object, a Statement in the Ontology UML Profile is modeled with the 
Object’s stereotype «OWLObjectProperty» or «OWLDatatypeProperty» 
(the stereotype of an Object in UML must match the stereotype for its 
Class’ stereotype). UML Links are used to represent the subject and the 
object of a Statement. To indicate that a Link is the subject of a Statement, 
LinkEnd’s stereotype «RDFsubject» is used, while the object of the 
Statement is indicated with LinkEnd’s stereotype «RDFobject». LinkEnd’s 
stereotypes are used because, in UML, Link cannot have a stereotype. 
These Links are actually instances of Property’s «RDFdomain» and 
«RDFrange». In brief, in the Ontology UML Profile a Statement is 
represented as an Object with two Links – the subject Link and the object 
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Link, which is shown in Fig. 9-4. The Persons represented, Mick Jagger 
and Keith Richards, are colleagues. Keith Richard also plays an 
Instrument, guitar. 

Fig. 9-4. Individuals and Statements shown in a UML Object diagram 

As with Properties of an ontology, the diagram’s readability can be 
further increased by using distinct colors and custom graphical symbols. A 
tiny circle can be used instead of the standard box for representing a 
Statement in order to reduce clutter in a diagram. 

9.4 Different Versions of the Ontology UML Profile 

The ODM specification (and especially the part that deals with the 
Ontology UML Profile) is still under development. For that reason, the 
final version of the Ontology UML Profile will probably be different than 
the version we have described. However, the version described here should 
be very useful for getting a feeling for what it is like to create ontologies 
with UML. It is very easy to get accustomed to a similar profile once you 
have got a feel for working with one profile. 

To show you what the differences could look like, we shall show you 
diagrams of an ontology similar to those which we have just talked about. 
There is another reason why we are showing these diagrams here. Some of 
the tools described and the discussion in this book refer to this older 
version of the Ontology UML Profile [Djuri  et al., 2005b] which is called 
GOOD OLD AI Ontology UML Profile . This profile was later updated 
(but there is no point in updating tools until the official specification has 
been finished). 

So, here is how classes look like (Fig. 9-5): 
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Fig. 9-5. Class Diagram showing relations between Ontology Classes and 
Individuals in the Ontology UML Profile 

Properties (Fig. 9-6): 

Fig. 9-6. Ontology Properties shown in UML Class Diagram 
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Statements (Fig. 9-7): 

Fig. 9-7. Individuals and Statements shown in a UML Object Diagram 

Of course, when the specification has been completed, you should look 
at the specification document for the exact details. Some of these details, 
especially the most important ones, will probably be the same or almost 
the same as those we have described in this chapter. However, there might 
be many less important details that are a little different. Something that is 
important, however, is that you can start from the examples that we have 
shown you and very quickly catch up with the specification.



10. Mappings of MDA-Based Languages and 
Ontologies

The MOF-based ontology metamodels of ontology languages presented in 
this book, namely the ODM and the Ontology UML Profile (OUP), are 
defined in the context of the MDA’s metamodeling architecture. However, 
such a definition is not sufficient; they need to interact with real-word 
ontologies, for example with OWL ontologies. It is obvious that we need 
to develop transformations to support conversions between MDA ontology 
languages and OWL. In fact, this has also been requested by the OMG 
ODM RFP, but neither the present approach nor the current ODM draft 
specification itself provides a thorough solution to this problem, i.e., first 
proposing a conceptual solution and then digging into implementation and 
technological details. In this chapter, we describe all these transformations 
in terms of the modeling and technical spaces that we described earlier in 
the book (see Chap. 5). Accordingly, we first identify all modeling spaces 
related to this problem and depict their mutual relations. Using those 
relations, we recommend tools and techniques for implementing these 
transformations, and finally describe one of such implementation.  

10.1 Relations Between Modeling Spaces 

Figure 10-1 shows all modeling spaces that we have recognized as 
important for the MDA standards and the present Semantic Web ontology 
languages (OWL and RDF(S) in the first place) to be used cooperatively. 
In the MOF modeling space, we have defined the ODM and the OUP. It is 
important to note that the ODM is defined in the M2 layer, while the OUP 
resides in both the M1 and M2 layers according to [Atkinson & Kühne, 
2002]. In Fig. 10-1, we show them both in the M2 layer for the sake of 
clarity. Concrete real-world models are located in the M1 layer and consist 
of classes and their instances. According to [Atkinson & Kühne, 2003], we 
must have more than one ontological layer in the M1 layer, and in the case 
of UML we have two ontological layers: one for classes and one for class 
instances (i.e., objects). For all MDA layers, one can use XMI, an XML-
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compatible format for sharing metadata that we have described in Chap. 4. 
In the bottommost layer (M0, not shown in the figure, but below M1), 
these are things from reality. 

Fig. 10-1. M2-based mappings between the ontology modeling space and the 
MOF modeling space through the EBNF modeling space 

The ontology modeling space includes the W3C recommendation for 
the Web Ontology Language (OWL). This ontology language is based on 
XML and RDF(S), and thus an XML format is being used for exchanging 
OWL ontologies. In this modeling space, we can identify various 
abstraction layers in order to find its relations to the MOF modeling space. 
The layer above bottommost is denoted as O1. In the O1 layer we build 
ontologies, i.e., we create classes, properties, relations, and restrictions. 
Ontological instances are located in the O1 layer in the ontology modeling 
space. We use an analogy between the topmost layer defined in the 
ontology modeling space and the results given in [Decker et al., 2000]. In 
that paper, an ontology language (Ontology Inference Layer, or OIL) was 
described using another ontology language (RDF(S)). In fact, Decker et al. 
created a metaontology. Finally, we can say that there is a metaontology 
that defines OWL and that this metaontology is in the O2 layer. We also 
refer to this modeling space, as well as the RDF(S) modeling space 
described in Chap. 5 relaying on a similar assumption. Actually, we have 
generalized the treatment, in that the O3 layer is defined using RDF(S) as 
well. Note that such a layered organization of ontologies is already known 
in AI as Brachman’s distinction of knowledge representation systems 
[Brachman, 1979]. However, this organization does not make a separation 
between ontological and linguistic relations [Atkinson & Kühne, 2003], as 
the schema and instances of an ontology are defined in different layers, 
similarly to what the MDA modeling framework initially did (M1 for 
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models and M0 for instances). Using definitions of ontological and 
linguistic relations as well as modeling spaces, we have recognized that we 
actually have the same situation in the ontology modeling space – two 
ontological layers in the O1 linguistic layer of the ontology modeling 
space. In the bottommost layer of the ontology modeling space (O0), there 
are things from reality. 

We now make some important statements that one must take account of 
in order to provide transformations between these two modeling spaces: 

1. The role of the MOF (M3) is epistemologically equivalent to the role 
of a metametaontology (O3). 

2. The role of the O2 layer (metaontology) is equivalent to that of the 
metamodel layer (M2) (e.g., the ODM and the OUP), that is to say, 
they both specify ontology languages in terms of different modeling 
spaces.

3. The O1 layer has a role equivalent to that of the model  layer (M1) of 
the MOF modeling space. In fact, this conclusion comes from 
Atkinson and Kühne’s ontological and linguistic layers [Atkinson & 
Kühne, 2003], where one linguistic layer (in this case M1) can 
contain many ontological layers. Accordingly, the two ontological 
layers residing in the O1 linguistic layer (ontology schema and 
ontology instances) are equivalent to the classes and objects 
comprising the M1 layer in the MOF modeling space. 

Formally, we can say that: M3  03, M2  02, and M1  O1. 
Since both the ontology and the MOF modeling spaces use XML for 

sharing their metadata, we can include a new modeling space in this 
discussion. Of course, this is the Extended Backus–Naur form (EBNF) 
modeling space that defines XML. This modeling space also has a layered 
organization  very similar to the organization of both the ontology and the 
MOF modeling spaces, but this organization is defined in terms of syntax 
(not semantics) [Klein, 2001]. We can look at the EBNF modeling space in 
terms of the W3C XML Schema recommendation. The topmost level (S3) 
of the EBNF modeling space is a universal, well-known, and self-defined 
syntax also called EBNF. When we analyze the context of the XML 
technical space formally defined in the EBNF modeling space, we find that  
the S2 layer comprises a schema for schemas (i.e., a metaschema). This 
metaschema defines the validity of XML Schema definition documents. 
Domain-specific XML vocabularies (i.e., schemas) and concrete XML 
documents are defined in the S1 layer. Accordingly, we can draw 
conclusions about equivalences between these two modeling spaces: S3 
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03, S2  O2, and S1  O1. Finally, note that there exist similar relations 
between the  MOF and EBNF modeling spaces:  S3  M3, S2  M2, and 
S1  M1.

Avoiding elaborations of the most recent research issue of an M3-
neutral infrastructure for bridging modeling spaces [Bézivin et al., 2005], 
we have used the above epistemological relations between these three 
modeling spaces to describe the transformations requested in the OMG 
ODM RFP. In fact, these transformations should be applicable to the 
model layer (M1, O1, and S1), but they are actually driven by their 
metamodels (i.e., metaontologies or metaschemas) [Bézivin et al., 2005]. 

10.2 Transformations Between Modeling Spaces  

It is obvious from the descriptions above that we cannot provide direct 
mappings between the ontology modeling space and the MOF modeling 
space. In fact, this transformation can only be defined through the EBNF 
modeling space. It is important to define a pair of transformations in order 
to enable two-way mapping (one transformation for each direction) 
between all OWL ontologies and all ontologies represented in an MDA-
based ontology language. The transformations can be based on 
“metadefinitions” of OWL (i.e. on its metaontology) and an MDA-
compliant language (i.e., a metamodel). This transformation principle is 
compliant with Bézivin’s principle of metamodel-based model 
transformation [Bézivin, 2001]. Practically, in terms of the EBNF 
modeling space, these transformations are based on the XML schemas of 
both OWL and XMI (i.e., the XML schema of the UML and ODM XMI 
formats). Figure 10-2 shows the OUP/OWL transformation of an OUP 
model (i.e., an OUP document in XMI format) to its equivalent OWL 
ontology (i.e.. an OWL document in XML format). This transformation 
maps the M1 layer into its corresponding OWL layer (O1). The most 
suitable implementation for this transformation is in XSLT, since in this 
case an XML document is converted into another XML document. The 
opposite transformation (from OWL to the OUP) can also be implemented 
in XSLT. However, we do not recommend this kind of implementation 
since we may use different XML representations (e.g., XML schemas) 
with different XML tag names to represent the semantics of an OWL 
ontology and its instances (for details see [Decker et al., 2000]). For 
example, the concept book can be represented by several different tags 
(book, bookInfo, etc.), but the ontology specifies that all these tags 
represent the same ontology concept. In this case we suggest using a 
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programming language to implement the transformation. For example, this 
transformation can be implemented in Java, but Java needs to be 
empowered with an OWL parser (e.g., Jena [McBride, 2002]). Note also 
that a concrete XSLT is a valid XML document. Accordingly, we can say 
that the XSLT language itself is defined using an XML schema that resides 
in the metaschema layer (S2), as the XML Schema language itself. 

Fig. 10-2. An example of a transformation in the XML technical space: the 
transformation of the OUP into OWL 

Figure 10-3 shows an example of some transformations within the MOF 
modeling space. This figure is organized according to the transformation 
schema proposed in [Kurtev & van den Berg, 2003] for transforming XML 
schemas to application models. In the MOF modeling space, we can only 
transform those ontology languages that have an MOF-compliant 
metamodel. Therefore, we illustrate the transformation between the OUP 
and the ODM. In terms of the MOF modeling space, the transformations 
between these languages should be implemented in one of the QVT 
languages (e.g., ATL [OMG QVT, 2003]), and the chosen QVT language 
should have its own metamodel. Although the OUP metamodel can reside 
in both the M1 and M2 layer, we have placed it in the M2 layer (see Fig. 
10-3) in order to avoid problems that can arise when transforming between 
different metamodeling layers. As a matter of fact, this can happen if we 
use a standard UML profile for ontology development without the user’s 
extensions (see [Atkinson & Kühne, 2002] for details). Note that this 
transformation can also be implemented through the EBNF modeling 
space in terms of XML schemas and XML documents. 
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Fig. 10-3. Transformations in the MOF modeling space: transformations between 
OUP and ODM 

Summarizing all these facts about transformations between the ontology 
and MOF modeling spaces, Fig. 10-4 gives some guidelines on how to 
perform transformations between every pair of the languages discussed 
above. In this figure, we indicate only the transformations between the 
languages considered that can be done by employing one transformation 
technique. At first sight, one might think that transformation between 
MDA-based languages (i.e., the ODM and the OUP) and OWL can be 
done within the MOF modeling space. However, that is not possible, since 
OWL is not part of the MOF modeling space, and it is not a MOF-based 
language. This means that a MOF-based transformation technology (e.g., 
QVT) cannot be applied to that pair of transformations. QVT can only be 
applied to MOF-based languages. So, we have to look for an intersection 
between those two languages. Since bridges exist between OWL and XML 
and between the MOF and XML, but not between OWL and the MOF, the 
transformation can only be defined in the EBNF modeling space as shown 
in Fig. 10-4. However, if one regards the OMG’s ongoing model-to-text 
initiative [OMG MOF-to-Text, 2004] as a part of the MDA technical 
space, then transformations between the ODM and OWL are possible in 
terms of the MDA technical space, but they are still not part of the MOF-
modeling space. Since the model-to-text initiative is in its initial stages of 
development (i.e., there is just a request for proposals to the OMG [OMG 
MOF-to-Text, 2004]) and there is not any test implementation of that 
proposal at the moment, we have not considered this case in Fig. 10-4. 
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Consequently, this figure should not be regarded as a final list of possible 
transformations. 

 
  Target language 

  ODM OUP OWL 

EBNF 
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OWL Programmed*, 
XSLT 

Programmed*, 
XSLT 

– 

* preferred case (e.g. Java empowered with a library for parsing OWL) 

Fig. 10-4. Overview of possible transformations between OWL, the ODM, and the 
OUP: modeling spaces in which the transformations can be done (EBNF and MOF 
modeling spaces) and implementation technologies for these transformations 
(XSLT, Query/View/Transformation (QVT), and programming languages) 

10.3 Example of an Implementation: an XSLT-Based 
Approach 

In the previous section, we explained the conceptual solutions for 
transforming between MOF-based ontology languages (i.e., the ODM and 
OUP) and OWL. In this section, we show an example of an 
implementation that transforms an OUP-based ontology to its equivalent 
OWL ontology [Gašević et al., 2004a; Gašević et al., 2004b; Klein & 
Visser, 2004]. The transformation provides us with Semantic Web 
ontologies that can be used in real-world Semantic Web applications. It 
was developed to support the GOOD OLD AI Ontology UML Profile 
(OUP) [Djurić et al., 2005b], since the official OMG UML Ontology UML 
Profile has not yet been adopted .  
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10.3.1 Implementation Details 

The main idea of having a UML profile for ontology development is to use 
existing UML tools. In fact, current UML tools (e.g., IBM Rational Rose 
and Poseidon for UML) support mainly the XMI standard [OMG XMI, 
2002] – an MDA XML-based standard for metametamodel, metamodel, 
and model sharing. Since XMI is XML-based, one can employ XSLT to 
transform XMI documents into the target documents. These target 
documents can be written in an ontology language, for example OWL, 
which also has its own XML syntax. On the other hand, when we use an 
approach based on the XSLT principle, we do not need to modify a UML 
tool; instead, we just apply an XSLT to the output of the UML tool. 
Accordingly, we can use the well-defined XML/XSLT procedure shown in 
Fig. 10-5. 

XMI  XSLT 
processor 

XSLT  

export 

share

input output

import

Real-world 
ontology-based 

applications 

OWL

UML tool Ontology tool 

Fig. 10-5. Using the XSLT principle: extensions of present UML tools for 
ontology development 

A UML tool can export an XMI document that an XSLT processor (e.g., 
Xalan; http://xml.apache.org) can use as input. An OWL document is 
produced as the output, and this format can be imported into a tool 
specialized for ontology development (e.g., Protégé [Protégé, 2005]), 
where it can be further refined. On the other hand, since we obtain an 
OWL document, we do not need to use any ontology tool; the document 
obtained can be used as the final OWL ontology. 

The XSLT that we have implemented for mapping OUP models to 
OWL ontologies contains a set of rules (i.e., XSLT templates) that match 
the UML XMI constructs of the OUP models and transform them into 
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equivalent OWL primitives. In developing these rules, we faced some 
serious obstacles resulting from evident differences between the source 
and target formats. We note some of these obstacles below: 

The structure of a UML XMI document is fairly awkward, since it 
contains a full description of the UML model that it represents, for 
example classes, attributes, relations (associations, dependencies, and 
generalization), and stereotype descriptions. 
In some cases, the OUP uses more than one UML construct to model 
one OWL element. For example, to model the someValuesFrom
restriction using OUP (see Fig. 10-7), we need three UML classes and 
three relations (i.e., one association and two dependencies). This is 
especially difficult, since each UML construct has a different stereotype. 
UML tools can only draw UML models, and they do not have an ability 
to check the completeness of an OUP ontology. Thus, the XSLT is 
required to perform this kind of checking of XMI documents. This is the 
only way to avoid the generation of erroneous OWL ontologies. 
The XSLT must make a distinction between classes that are defined in 
other classes (and cannot be referenced using their ID), and classes that 
can be referenced using their ID. Accordingly, we have included the 
odm.anonymous tagged value in the OUP, which help us differentiate 
between these two cases. 

Taking all this into account, it becomes obvious that the XSLT that we 
have developed is too large to be included in this book. However, this 
transformation is available on the book’s Web page together with 
supplementary materials.  

10.3.2 Transformation Example 

In order to illustrate the application of the above XSLT, we have built the 
well-known Wine ontology using the GOOD OLD AI Ontology UML 
Profile [Djuri  et al., 2005b]. We show a part of this ontology, in Fig. 10-
6. WineDescriptor is a class equivalent to the union of the classes 
WineTaste and WineColor, whereas the WineColor class is an 
enumeration of the instances of the WineColor class (i.e., individuals), 
White, Rose, and Red. Note that there are two anonymous classes 
(Union and Enumeration) in Fig. 10-6. These classes are defined 
through other classes (e.g., the anonymous Enumeration is defined in 
the class WineColor) and cannot be used outside of their definitions. 
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Note also that we use the tag value odm.anonymous with a value true to 
denote anonymous classes. This helps us differentiate between anonymous 
and nonanonymous classes in the automatic transformation of OUP 
models. 

An example of a class diagram that depicts ontology properties modeled 
in UML is shown in Fig. 10-7. In this example the Wine class has the 
«ObjectProperty» locatedIn, i.e., the Wine class is the domain of 
the property locatedIn. The range of the «ObjectProperty»
locatedIn is the Region class. Since ontology languages (i.e., OWL 
and the ODM) may specify various features of object properties we have 
introduced tagged values describing those characteristics: symmetric,
transitive, functional, and inverseFunctional.

Figure 10-7 also depicts a restriction of a class on a property – the  
«ObjectProperty» of Wine locatedIn has a someValuesFrom
restriction on the «OntClass» Region. That means that each instance of 
the Wine class must have at least one instance of the property 
locatedIn whose range is the Region class. An additional restriction is 
the multiplicity (i.e., how many property instances can be attached to a 
class), defined as the multiplicity of the association between the Wine
class and the locatedIn property. 

Fig. 10-6. OUP class-oriented stereotypes (an excerpt from the Wine ontology) 

In the OUP, a Statement is represented as an Object with two 
Links, the subject Link and the object Link, which is shown in Fig. 10-
8. Here we have a statement that says the Region’s instance 
MendocinoRegion is locatedIn the SonomaRegion, and its 
adjacentRegion is the CaliforniaRegion.
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Fig. 10-7. An OUP class property and its restriction in the Wine ontology 

Fig. 10-8. The OUP fully supports ontology instances through OUP statements: an 
example from the Wine ontology  

Figure 10-9 depicts an excerpt from the output OWL document 
generated by the XSLT. Figure 10-9a shows the OWL representation of 
the classes defined in Fig. 10-6. Note how OUP classes with the tagged 
value odm.anonymous are mapped into OWL (e.g., WineDescriptor
has an equivalent anonymous class, defined as the union of the 
WineTaste and WineColor classes). Figure 10-9b shows the OWL 
definition of the locatedIn property, which has the Region class as its 
range, and both the Region and the Wine classes as its domain. On the 
other hand, the Wine class additionally restricts this property, using the 
OWL someValuesFrom restriction. Since the OUP provides full support 
for OWL statements, we are able to transform these statements into 
equivalent OWL constructs (i.e., full individual descriptions). Figure 10-9c 
shows the OWL representation of the statements shown in Fig. 10-8.  

This example clearly illustrates the power of our solution to generate 
both a nontology schema [Devedži , 2002] (classes, properties, etc.) and 
ontology instances (bodies of knowledge) [Chandrasekaran et al., 1999]. 
This feature is not supported in other MDA-based proposals for ontology 
development. 
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In the next subsection, we outline our first practical experience with this 
solution.

10.3.3 Practical Experience 

We have already noted that the transformation that we have developed 
enables us to create complete OWL ontologies using standard UML tools – 
specific ontology development tools are not a necessity for ontology 
development anymore. Specifically, to use the OUP and our XSLT in 
practice, we need to employ a suitable UML tool that supports the 
following:

Attaching stereotypes to all for the UML concepts that we have in the 
OUP. For instance, the present UML tools rarely allow objects and link 
ends to have a stereotype (e.g., the objects in Fig. 10-6). 
A convenient way to use tagged values and attach them to any UML 
element (e.g., the odm.anonymous tagged value in Fig. 10-6). 
Creating relations between different UML primitives, such as those 
shown in Fig. 10-6. We emphasize especially the importance of 
relations (e.g., UML dependencies) between a UML class and a UML 
object. This kind of relation is valid in the UML syntax, and can be 
represented on class diagrams (also called static structure diagrams in 
the UML specification [OMG UML, 2003a; OMG UML, 2003b]). 
The XMI standard for serialization of UML models, since our XSLT is 
based on the UML XMI format. 
We have analyzed two UML tools: IBM Rational Rose1 and Poseidon 

for UML.2 Whereas Poseidon for UML satisfies all of the above mentioned 
requirements, IBM Rational Rose does not provide support for most of 
them (e.g., an object cannot have a stereotype, and a class and an object 
cannot be related using any UMLs relation). Additionally, Poseidon for 
UML uses the NetBeans MDR3 repository for storing MOF-compliant 
metamodels, and the definition of the MOF itself. This is an important 
feature, because by using model repositories we can benefit from all of the 
advantages of the MDA [Bock, 2003]. Furthermore, Poseidon for UML 
has already found its place in ontological engineering, since it is a UML 
tool recommended to be used with the Protégé UML back end for 
importing UML models [Protégé UML, 2004]. 

                                                     
1 http://www.rational.com 
2 http://www.gentleware.com 
3 http://mdr.netbeans.org 
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 <owl:ObjectProperty rdf:ID="locatedIn"> 
  <rdfs:range rdf:resource="#Region"/> 
  <rdfs:domain rdf:resource="#Wine"/> 
 </owl:ObjectProperty> 

 <owl:Class rdf:ID="Wine"> 
  <!-- ... --> 
  <rdfs:subClassOf rdf:resource="#PotableLiquid"/> 
  <rdfs:subClassOf> 
   <owl:Restriction> 
    <owl:onProperty rdf:resource="#locatedIn"/> 
    <owl:someValuesFrom 

rdf:resource="#Region"/> 
   </owl:Restriction> 
  </rdfs:subClassOf> 
 </owl:Class> 

b)

 <owl:Class rdf:ID="WineDescriptor"> 
  <owl:equivalentClass> 
   <owl:Class> 
    <owl:unionOf rdf:parseType="Collection"> 
     <owl:Class rdf:about="#WineTaste"/> 
     <owl:Class rdf:about="#WineColor"/> 
    </owl:unionOf> 
   </owl:Class> 
  </owl:equivalentClass> 
 </owl:Class> 

 <owl:Class rdf:ID="WineTaste"> 
  <rdfs:subClassOf rdf:resource="#WineDescriptor"/> 
 </owl:Class> 

 <owl:Class rdf:ID="WineColor"> 
  <rdfs:subClassOf rdf:resource="#WineDescriptor"/> 
  <owl:equivalentClass> 
   <owl:Class> 
    <owl:oneOf rdf:parseType="Collection"> 
     <WineColor rdf:about="#Red"/> 
     <WineColor rdf:about="#Rose"/> 
     <WineColor rdf:about="#White"/> 
    </owl:oneOf> 
   </owl:Class> 
  </owl:equivalentClass> 
 </owl:Class>

 <Region rdf:ID="SonomaRegion"/> 
 <Region rdf:ID="CaliforniaRegion"/> 
 <Region rdf:ID="MendocinoRegion"> 
  <locatedIn rdf:resource="#SonomaRegion"/> 
  <adjacentRegion rdf:resource="#CaliforniaRegion"/> 
 </Region> 

a) c) 

Fig. 10-9. The resulting OWL description: (a) classes generated for the OUP 
shown in Fig. 10-6; (b) object property OWL descriptors for the model shown in 
Fig. 10-7; (c) OWL statements obtained from Fig. 10-8 

The second important decision is how to generate the OWL equivalent 
of an OUP model, since the same OWL definition (e.g., an OWL class) 
can be generated in more than one way (e.g.,  an OWL class can be 
defined using an unnamed class as either an equivalent class or a subclass). 
We decided to generate OWL ontologies using a technique similar to that 
employed by the Protégé OWL plug-in.4 Hence, we have managed to 
provide an additional way to import Poseidon’s models into Protégé 
through OWL. Since Protégé has more advanced features for ontology 
development, it can be used to further improve and refine an OUP-defined 
ontology. 

We have tested our solution using the Wine ontology [Noy et al., 2001]. 
First, we represented this ontology in Poseidon using the OUP. Parts of 
this ontology were used in the previous subsection in order to illustrate the 
OUP (e.g., Fig. 10-6, Fig. 10-7, Fig. 10-8). Then we exported this extended 
UML representation into XMI. After applying the XSLT, we obtained an 
OWL document. Finally, we imported this document into Protégé using 
the OWL plug-in. A screenshot that depicts a part of this imported OWL 
ontology is shown in Fig. 10-10. 

                                                     
4 http://protege.stanford.edu/plugins/owl/ 
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We must admit that we have found a certain difference between the 
OWL generated by the XSLT and the OWL produced by Protégé. The 
difference was detected in the representation of OWL individuals. To 
represent individuals, Protégé uses owl:Thing with an attribute 
rdf:type that refers to its type (i.e., its OWL class). For example, Red is 
an instance of the WineColor class, and is represented as follows: 

<owl:Thing rdf:ID="Red" rdf:type="#WineColor"/> 

In our solution, an individual is represented using a tag that has the same 
name as its OWL class. For example, the same instance of Red is 
represented as follows: 

<WineColor rdf:ID="Red"/> 

Fig. 10-10. An example of an OWL ontology generated from the OUP and 
imported into Protégé: the Wine ontology 

We have found this difference unimportant, since these two 
representations of individuals have the same meaning in the OWL 
notation. Additionally, Protégé is able to recognize OWL instances defined 
in both ways since it uses Jena for parsing OWL ontologies.  
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The current XSLT version has a limitation in that it does not support 
packages (i.e., multiple OUP ontologies in one UML model). This means 
that it is unable to produce more than one OWL document (i.e., ontology). 
Actually, even though the OUP supports multiple ontologies within the 
same XMI project, the XSLT standard and XSLT processors introduce this 
limitation. Of course, this can be overcome using some nonstandard XSLT 
primitives (i.e., XSLT extensions) that provide for the production of 
multiple documents from one source XML document (e.g., the SAXON 
XSLT processor and its XSLT extensions). 

In Chap. 13, we show additional examples of the practical usage of this 
XSLT in transformations of ontologies developed with OUP into the OWL 
language.

10.3.4 Discussion 

One very important remark to be made is that the XSLT implemented is 
not a part of the OMG ODM RFP [OMG ODM RFP, 2003]. This RFP 
presumes transformations between the ODM and the OUP, as well as 
transformations between the ODM and OWL (see Fig. 10-11). This means 
that if one wants to transform an OUP-defined ontology into OWL, that 
ontology should first be transformed into the ODM, and subsequently from 
the ODM to OWL. However, as we have shown, it is also possible to 
implement everything using an XSLT because all ontology representations 
have an XML binding: the ODM, as a MOF-defined metamodel, uses XMI 
format; the OUP, as a UML profile, uses the UML XMI format; and OWL 
has an XML-based syntax. Our transformation from the OUP to OWL is a 
practical extension of the present UML tools that empowers them to be 
used for the development of ontologies expressed in a Semantic Web 
ontology language. It is a kind of bridge between ontological and software 
engineering, since the current MDA-compliant implementations (see Chap. 
7) are at a very immature stage. Development of these ODM OUP and 
ODM OWL transformations is currently our primary activity. 

Transformations from the OUP to the ODM and from the ODM to OWL 
offer the following advantages: 

When one wants to support a new ontology language (e.g. DAML+OIL) 
using the ODM-based principle, only one pair of transformations needs 
to be implemented: from the new language to the ODM, and from the 
ODM to the new language. If we want to support transformations 
between n different languages (such as the OUP and OWL), then it is 
necessary to implement 2n transformations. If, instead, we implement 
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transformations between every pair of ontology languages without using 
the ODM (e.g., between OWL and DAML+OIL), then we need n2

transformations. 

ODM

OUP OWL

transformations transformations

XSLT

Fig. 10-11. Relations between the solution implemented and the transformations 
recommended in the OMG ODM RFP 

When transforming ontologies through the ODM, we can validate them 
against an ontology metamodel (i.e., the ODM). In this way, we can 
prevent transformation of an invalid ontology or issue a warning when 
an ontology is inconsistent. This feature is very important for OUP 
models, since existing UML tools are unable to check UML models that 
are based on a UML profile. 
Finally, one should note that the transformation mechanism for MOF-
based ontologies is driven by ideas from [Bézivin, 2001], in which 
metamodel-based model transformations were proposed. In the case of 
MDA-based ontology languages, we have different metamodels (i.e., 
OWL and the OUP metamodel). However, the ODM serves as an 
integration point that decreases the number of transformations needed. 
Also, it is useful to have a central metamodel (in this case, the ODM) 
for each area.  



Part III    Applications 



11. Using UML Tools for Ontology Modeling 

In this chapter we shall give you a few tutorials on how to use some of the 
currently available UML tools to create ontologies using the Ontology 
UML Profile. 

Before you start, you should be aware of some constraints that the tools 
that are available today have. The biggest and most important problem is 
that only a few tools can successfully exchange models with each other. 
The lack of a common model exchange standard when the first UML tools 
became widely popular at the end of the 1990s caused differences in the 
way they perform the serialization of models. Despite the fact that in the 
meantime UML XMI has been adopted as the standard for exchanging 
models, some of these tools still prefer proprietary non-XML formats 
(IBM Rational Rose for example). Even when they oerform serialization 
into UML XMI, you must be aware that the UML XMI formats used are 
different, and so you cannot usually open a model created in one tool in 
another tool. 

Today, most tools try to support UML2 as some sort of add-in built on 
top of the facilities of the old UML. Until UML2 is fully supported, which 
should solve the interoperability problem, you should be very careful when 
choosing your UML tool. Some are friendlier than others, especially those 
that are built on “standard” metadata repositories: NetBeans MDR (based 
on the OMG MOF 1.4 standard), and Eclipse EMF (based on Ecore, which 
is not standard but has wide support). The rule of thumb is that (currently) 
tools based on each of these repositories support some interoperability 
with other tools based on the same repository, but almost no 
interoperability with the competing repository. 

This information may seem too technical to you, but it is important at 
the current stage of the evolution of UML and MDA tools. Remember, you 
can draw diagrams using any tool, you can even use chalk and a 
blackboard, but in the end you would like to be able to open your model in 
another tool, or to perform transformation to another technology. 

For example, your team could start from an ontology, transfer it to a 
UML platform-neutral domain model, and then generate a Java 
implementation. To do all these things, you need to be aware of which 
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tools can “talk” to each other, and with current tools this is often a 
problem. This is the bad news. 

The good news is that serious efforts are being made in the industry to 
enable interoperability. The OMG UML2 and MOF2 standards are the key 
specifications in that direction. Tools based on these standards should not 
have the above difficulties, but you will have to wait a few years until 
vendors implement them in their tools. Luckily, the Semantic Web and 
ontologies are still under development, too, so when they are ready for the 
big scene, proper MDA-based ontology tools will be available. 

11.1 MagicDraw 

One of the UML tools that can easily be used for ontology development is 
MagicDraw. This section gives a short tutorial on how to use it to create 
ontologies using the Ontology UML Profile. 

The MagicDraw core is based on the NetBeans Metadata Repository, 
which means that it correctly supports serialization to UML XMI for 
version 1.4 of the UML standard. The current version (9.5) also supports 
UML2, but not at the core level (the same applies to other tools today). 

So, let us start. 

11.1.1 Starting with MagicDraw 

Like almost all other popular UML tools, MagicDraw is written on the  
Java platform, so it can be run on any major operating system. Of course, 
you have to install the Java virtual machine if you have not done so yet. 
MagicDraw is available in several editions, some of them can be used free 
of charge.1 To start, you could try the Community Edition, which is free 
and supports only class diagrams, which is what you need to work with the 
OUP anyway. Get it from http://www.magicdraw.com and follow the 
installation procedure. 

After opening MagicDraw, you will see the usual structure of the user 
interface that almost all UML tools follow (Fig. 11-1), so it should not be 
hard to accustom yourself to it. On the upper left, there are various 
navigation trees, which enable you to have control over your model’s 
elements. The lower left corner contains a few property windows, where 
you can set detailed properties of your elements and their graphic 

                                                     
1 We are not affiliated to MagicDraw’s creators in any way, so, please, if you have 

any question related to this tool, ask it at http://www.magicdraw.com. 
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representations on diagrams. The central part is the working area, where 
you can draw diagrams of your ontologies. 

Fig. 11-1. MagicDraw – main parts of the main screen 

When you start a new project, the most useful views on the left side are: 

The containment tree, where you can see the packages that your model 
contains. If you work with ontologies, those packages will represent 
various ontologies, 
The inheritance tree, which is useful if you want to see the inheritance 
of your model’s elements, 
The diagrams tree, without which it would be very hard to browse in a 
project with many different diagrams. UML defines eight more kinds of 
diagram, but you will need only class diagrams to work with the OUP. 
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Below these views, you can find Properties view, which contains two 
tabs:

Element, where you can set properties for your model’s elements, 
Symbol, where you can determine what a shape that represents this 
element looks like on a particular diagram. 

UML tools, of course, offer many more views, but we have mentioned 
only a minimal set that you simply have to use when you are working with 
UML models. An additional piece of advice when you are looking for 
some particular functionality is to try selecting an element that you need to 
work with and invoke the context menu with a right click. The two options 
in the context menu most often used will probably be “Specification” and 
“Symbol(s) properties”. The best way to get used to the tool you have 
chosen is to move around it and try as many options as you can on a 
simple model to see what can be done. 

11.1.2 Things You Should Know when Working with UML 
Profiles

We have already given you an introduction to UML profiles, so you know 
the theory. Now we shall teach you how to use it with real UML tools. 

Basically, it is pretty simple. You use profiles mostly by adding 
stereotypes and tagged values to ordinary UML model elements. Most 
tools will let you create a new stereotype on the fly, i.e. they will let you 
add any string you like as a stereotype of your element. This can lead to a 
mess in your model. Some other tools will at least try to make you more 
responsible, so that you must create a new stereotype first and then add it 
to the element. MagicDraw is such a tool. However, the best choice is to 
create a reusable profile that contains all necessary elements and then use 
it as a template for your projects. We provide such a profile which you can 
import into MagicDraw. 

So, if you have a reusable profile that you can import to your tool, you 
can start working on your models. If you do not have such a profile, you 
can create it by adding new elements whose type is the stereotype (by 
selecting New element > stereotype).

To make a profile available for use in your projects, place it into 
<magicdraw install directory>/profiles. In this case, you 
should place Ontology UML Profile.xml.zip in the profiles 
directory. 
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Now, when you have made the profile available, the procedure should 
be simple (see Fig. 11-2): 

Select File>New Project from the main menu and create an ordinary 
UML project; 
Select File>Use profile/module from the main menu to select the 
Ontology UML Profile from the list of available profiles. 
MagicDraw uses a MagicDraw profile and a UML standard profile – 
you can remove them from your project if you like, to have a less 
bloated project. 

Fig. 11-2. Enabling the Ontology UML Profile in your project 

Now, you are ready to work with ontologies using MagicDraw. 
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11.1.3 Creating a New Ontology 

In the OUP, an ontology is represented by a package with a stereotype 
«OWLOntology». To create the ontology, first create new class diagram 
and place the package in it. Then, choose Stereotype from the context 
menu of the package created and choose «OWLOntology». This procedure 
is shown in Fig. 11-3. 

Fig. 11-3. Creating a new ontology 

Now, you can use the Specification dialog to set some properties of  the 
Musician ontology (Fig. 11-4), or the Symbol(s) properties to customize 
visual appearance of the ontology in the diagram (Fig. 11-5). 
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Fig. 11-4. Package specification diagram for the Musician ontology 

Fig. 11-5. Symbol properties for the Musician ontology 

Of course, one model element («OWLOntology») can be placed in 
multiple diagrams, each time with different details. You can also use 
diagrams to show the relations of this element with other ontologies using 
«owlImports», «owlPriorVersion», «owlBackwardCompatibleWith» and 



236      11.  Using UML Tools for Ontology Modeling 

«owlIncompatibleWith». The easiest way to create such relationships is to 
drag the dependency between the selected packages and apply an 
appropriate stereotype to it (see Fig. 11-6). 

Models (without diagrams) are intended to be read by machines, 
whereas diagrams are for you and your colleagues. Therefore, the symbol 
properties are not unimportant, and so you should choose carefully the 
colors and fonts and align the various elements in the diagrams. 

The diagram shown in Fig. 11-6 shows that elements in the Musician 
ontology use elements in the People ontology. These elements  could be an 
ontology class or property in Musician that extends some class or property 
in People, or a class in Musician that is connected with a class in People, 
or two classes in Musician connected via some property in People... There 
are countless possibilities. Similar logic applies to imports into UML: if 
you need something from a package (ontology) - import it. 

Fig. 11-6. Connecting ontologies – the Musician ontology imports the People 
ontology 
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11.1.4 Working with Ontology Classes 

When you are creating an ontology, you will usually start by identifying 
concepts (entities), i.e. ontology classes. As we have already seen, 
ontology classes in the OUP are modeled using UML classes with a 
stereotype «OWLClass». 

When creating a class, you should put it in an ontology. It would be 
awkward if your classes just wandered around. So, you should select the 
Musician ontology and choose New Element > Class (Fig. 11-7). The new 
class will be created in the Musician package (ontology). Of course, you 
should add a stereotype once when your new class has been created to 
denote that it is not an ordinary UML class, but an ontology class. 

Fig. 11-7. Creating a new ontology class inside an ontology 

You will surely notice that the class created is not visible in any 
diagram. Why is that? As you will probably remember, UML is not just 
about pictures, it also defines objects as representations of reality. So, the 
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class that you have just created, let us say this is a class that represents a 
musician, which belongs to the Musician ontology, exists as an entity, but 
is not visually represented on any diagram. You do not have to represent it 
on a diagram at all, but you probably should show it on one or more 
diagrams, with more or less details (not all details have to be represented). 

As we do not want to place all elements in a Main diagram, we need to 
create at least one diagram per ontology (package). So, select the Musician 
package and create a new class diagram in it. For simple ontologies, one 
diagram should be enough. In the real world, you will probably need many 
diagrams per ontology, and many ontologies for the domain of your 
problem. To make the Musician class visible in a diagram, simply select it 
and use the drag-and-drop technique to place it on the diagram, as shown 
in Fig. 11-8. A box named “Musician”, with a stereotype «OWLClass» 
will be created. 

Fig. 11-8. Adding an existing element to a diagram 
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Almost all UML tools allow you to change detailsof the shape of boxes 
and lines. We recommend that you choose a different color for each of the 
main groups of elements. For example, all classes in our diagrams are light 
green2, to make them distinct from individuals (yellow), properties (light 
brown) and other concepts. Of course, you do not have to use this color 
scheme, but it is wise to stick to some rules of your choice to make your 
diagrams readable when your project grows. 

If we add more element shapes to a diagram, the underlying elements 
will be created automatically. They will be nested in the package where the 
diagram is placed. For example, if we create the ontology classes 
Instrument, Album, Event and Admirer by placing them in the Musician 
diagram, they will appear in the subtree of the Musician package (Fig. 11-
9).

Fig. 11-9. Adding new classes to a diagram 

                                                     
2 Figures in this book are printed in black and white, so you will see only different 

shades of gray. 
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11.1.5 Working with Ontology Properties 

Now that we have placed the main classes on our Musician ontology 
diagram, we need to attach some properties to them. Without properties, 
they are just unrelated, isolated islands. 

Owning to the significant difference between ontology properties and 
the UML elements most similar to them, namely attributes and 
associations, properties are represented by a stereotyped class and 
stereotyped associations that connect the property to its domains and 
ranges. When a property is simple (for example, a musician’s name), it can 
be represented as a stereotyped attribute. 

You can create properties in the same way as you create classes since 
they are represented in the same way – as stereotyped UML classes. 
Simple properties are represented as «OWLDatatypeProperty», while 
relationships between ontology classes are «OWLObjectProperty». Figure 
11-10 shows some properties from the Musician ontology placed in the 
Musician diagram. 

Fig. 11-10. Creating new properties 
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These properties are useful, but are not complete. Their main purpose is 
to connect entities, so we must add ranges and domains to them to make 
these connections.  

If the property is a datatype property (a simple property in the object-
oriented terminology), we can specify a range as an attribute of an 
«OWLDatatypeProperty» stereotyped «RDFSrange». Figure 11-11 shows 
the dialog that is shown upon opening the class specification of a name. 

Fig. 11-11. Specification of «RDFSrange» of a name property 

Fig. 11-12. Setting the range of a property 
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After the range has been created, a click on the Edit button will show 
the dialog with the attribute’s details (Fig. 11-12). We need to select the 
type of the attribute, which in this case is String, an «RDFSLiteral». Of 
course, if this type has not been set, we should skip to the Stereotypes tab 
and select a stereotype of the attribute - «RDFSrange». 

We have now set the range of the property, but we still have not 
connected it with its domains, the classes that it describes. To attach a 
simple property (DatatypeProperty) to a class, select its representation on a 
diagram and choose the Insert New Attribute option from a context menu. 
To make the attribute different from an ordinary attribute, set 
«RDFSdomain» as the attribute’s stereotype (Fig. 11-13). We now have 
added a name attribute to both Musician and Instrument, set both 
attribute’s stereotype to «RDFSdomain» and set the type to name.  

Fig. 11-13. Setting the domain of a datatype property 
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So, in both cases, the name is the same property (represented by a 
stereotyped UML class), whose domain and range are represented by 
different corresponding stereotyped UML attributes. 

The majority of the important relationships will, however, be object 
properties. The example that we shall consider is the “plays” relationship. 
This is represented by «OWLObjectProperty», too, but range and domain 
are represented using relationships, not attributes. These associations also 
have the stereotypes «RDFSdomain» and «RDFSrange» stereotype. 

Fig. 11-14. Representing the domain and range of an object property 

To avoid clutter in the existing diagram, we shall create a new class 
diagram for the purpose of representing the “plays” relationship (it is up to 
you how you arrange elements in your diagrams, of course). The new 
diagram is empty, so you should drag-and-drop the required existing 
elements from the containment tree (folder-like view on the left side). 
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Then, associate Musician and “play” with one association and “plays” and 
Instrument with another. Add the appropriate stereotypes and multiplicities 
to these associations and you have created a relationship (see Fig. 11-14). 

11.1.6 Working with Individuals 

One of the noticeable differences between ontology modeling and object-
oriented modeling (i.e. UML) is that you will not see many objects in 
object-oriented diagrams. Objects are something that is left for runtime, 
which is not depicted in diagrams very much. However, ontologies care a 
lot more about specific instances of their concepts. So, it is very likely that 
you will need to draw some object diagrams when creating your 
ontologies.

Fig. 11-15. Object diagram allowing to model individuals in MagicDraw 
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Object diagrams are, in fact, class diagrams that contain objects. While 
the UML specification allows this, some tools still do not support placing 
objects in class diagrams. Fortunately, MagicDraw does. 

Placing an object in a diagram is as simple as placing a class. The object 
is symbolized by a box. The difference from the symbol for a class is that 
the object’s name is underlined and the box does not have compartments 
for attributes and operations (although these compartments can be omitted 
in class symbols, too). So, we have created a new class diagram, named it 
“Artists”, and placed a few objects in it (Fig. 11-15).

Fig. 11-16. Assigning a type to an individual 

Most often, the type of an object is shown after its name 
(Hendrix:Musician) or through «RDFtype» dependency (Paganini).  

To assign a classifier (type) to Hendrix in this diagram, go to its 
specification, choose the Assigned Classifiers tab and click on the Assign 
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button. Then navigate the tree that pops up and select Musician (Fig. 11-
16). Objects have the same stereotypes as their classes, so if a class has a 
stereotype, it will be shown in the object’s symbol (e.g. we have added the 
«OWLClass» stereotype to the Hendrix object). 

To use the alternative approach, of an «RDFStype» dependency, just 
drag-annnd-drop the desired class onto same diagram where the object is 
and connect them with a dependency (shown by a dashed arrow symbol). 
Assign an «RDFStype» symbol to the dependency and you have assigned a 
type to an individual. 

11.1.7 Working with Statements 

What instrument did Jimi Hendrix play? And Niccolo Paganini? Jimi 
Hendrix was a famous rock guitar player in the 1960s. His playing style 
was so distinctive and advanced, that he is often considered the greatest 
guitar player in the history of rock music. More than a century ago, 
Niccolo Paganini’s virtuosity on the violin gained him the status of the 
greatest violinist of all time. His technique was so technically perfect that 
it looked impossible. Some thrilled listeners even claimed that the Devil 
himself guided Paganini’s hands. 

To describe what instruments they played, we must add new individuals, 
Electric Guitar and Violin, to the diagram. Thse are objects whose type is 
Instrument. Then, we must create two statements: Hendrix>plays>Electric 
Gitar and Paganini>plays>Violin. A statement is represented by an object 
whose type is a class that represents property, which is associated with the 
subject and object of the statement. So, we must create two statements of 
type plays and connect them to the appropriate individuals using links with 
«RDFsubject» and «RDFobject» stereotypes. The procedure for doing this 
in MagicDraw is similar to the procedure applied for creating individuals, 
and the result is shown in Fig. 11-17. 

Hopefully, this short tutorial will help you when you are at the 
beginning of your work with the Ontology UML Profile and MagicDraw. 
As you discover this tool, you will find that most UML tools are similar, 
and that you can quickly familiarize yourself  with other tools, as well with 
other UML profiles. If you have any in-depth questions about advanced 
use of UML Profiles, you will probably find answers in the general 
literature, or in literature that deals with other UML profiles, or even in the 
literature about the tool you use. This is one case where we all can feel 
benefits from the standards. 
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Fig. 11-17. Creating statements 

11.2 Poseidon for UML 

Another UML tool that can be easily adapted to ontology development is 
Poseidon for UML. Since Poseidon for UML (Poseidon, for short) is quite 
similar to MagicDraw with respect to the user interface, this section will 
just give a short overview of the features that have been used to develop 
ontologies using GOOD OLD AI Ontology UML Profile. We assume that 
the readers of this section have already read the section on MagicDraw.  

Similarly to MagicDraw, the Poseidon core is based on the NetBeans 
Metadata Repository, which means that it correctly supports serialization 
to UML XMI for version 1.4 of the UML standard. The current version 
(4.0) also supports UML2. For developing ontologies in Poseidon with the 
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OUP, it is sufficient to use the Community Edition, which is free. One can 
download this software from http://www.gentleware.com, and then follow 
the installation procedure.3 Poseidon projects can be saved into two 
formats: UML XMI, and ZUML (Zipped UML), which is actually a 
compressed (zipped) archive containing the UML XMI project together 
with other Poseidon-specific files.

Poseidon is written on the Java platform, and so it can be run on any 
major operating system. Of course, you have to install the Java virtual 
machine if you have not done that yet. The organization of Poseidon’s GUI 
is similar to that of most UML tools (see Fig. 11-18). In the upper left 
corner, there is a pane with a navigational tree that can provide various 
perspectives to the UML model under study: Class Centric, Diagram 
Centric, Inheritance Centric, Model Index, Package Centric, and State 
Centric. The default perspective is Package Centric, and in most cases this 
is the most suitable one for developing ontologies. A Poseidon UML 
project may contain many more packages, and each package may have a 
stereotype (e.g., the ontology stereotype). The lower left pane gives a Bird 
perspective of the UML diagram shown in the work area.  

Fig. 11-18. The graphical user interface of Poseidon for UML  
                                                     
3 For any question related to this tool, please ask at http://www.gentleware.com 
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The most important part of Poseidon’s GUI is the upper right pane, 
which is actually the working area, where you can draw diagrams of your 
ontologies. The working area shows the current UML diagram. You can 
open more than one UML diagram at the same time and all open diagrams 
are shown as separate tabs in the working area. Finally, the lower right 
pane has several tabs specifying features of a model element (e.g., a class, 
object, or association) selected in either the working area or the 
navigational tree, namely Properties, Style, Documentation, Source code, 
Constraints, and Tagged Values. The most important tab is Properties, 
which you use to specify various characteristics of model elements such as 
name, namespace, stereotype, and multiplicity.  

The biggest difference between MagicDraw and Poseidon is that you 
cannot define a UML profile as a separate unit in Poseidon. In fact, you 
have always to create the necessary stereotypes in every new Poseidon 
model. In order to avoid such a rather annoying repetition of actions, we 
have developed an empty Poseidon project containing all OUP stereotypes, 
which is available on the Web page carrying the supplementary resources 
for this book (http://www.modelingspaces.org). After opening this project 
in Poseidon, you will have an empty package whose stereotype is 
“ontology”, and also all of the stereotypes of the OUP. 

11.2.1 Modeling Ontology Classes in Poseidon 

To model ontology classes in Poseidon, you use UML class diagrams. You 
create diagrams in the navigational tree by selecting the target UML 
package (ontology) and selecting the menu option Create Diagram > 
Class Diagram. Otherwise, you can create a class diagram through the 
context menu (which you open with a right click). Note that the same class 
can be shown in many UML class diagrams, since the diagrams are 
notational features, whereas classes, associations, and other elements are 
parts of UML models. At the top of the current UML class diagram, there 
is a toolbar containing all model elements that can be represented in a 
UML class diagram. Drawing on UML class diagrams is done in a way 
similar to that for MagicDraw. The difference is that we always use the 
property pane (lower left pane) to define characteristics of model elements. 
For example, to define a stereotype for modeling the ontology class 
(OntClass), you select the stereotype button, and then the stereotype dialog 
is shown (Fig. 11-19).

You should add one of the available stereotypes (left) to the list of 
selected stereotypes (right). You should use the same procedure to define 
stereotypes for the other model elements that you use for modeling 
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ontologies (object, association, package, and dependency). All of the 
recommendations regarding the use of colors given in the section on 
MagicDraw are also applicable to Poseidon. 

11.2.2 Modeling Ontology Individuals and Statements in 
Poseidon

To model individuals and statements in an ontology with Poseidon, you 
use UML object diagrams like as you do in MagicDraw. The notation and 
rules for drawing individuals and statements are the same as those 
described for MagicDraw, so we shell not give details about Poseidon in 
this section. However, there one important difference: you cannot draw 
UML objects in UML class diagrams in Poseidon, nor can you draw UML 
classes in UML object diagrams, even though it is allowed in the UML2 
specification. Since it is very important for modeling ontologies to 
represent relations between UML classes and UML objects (e.g., the 
definition of enumerations as shown in Fig. 11-20), you should use UML 
deployment diagrams to represent this kind of relation.  

Fig. 11-19. Defining properties of UML model elements: the stereotype property 
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11.3 Sharing UML Models Between UML tools and 
Protégé Using the UML Back End

We have already described Protégé’s UML back end, which allows the 
sharing of UML models between UML tools and Protégé by using the 
UML XMI format. In this section, we describe the practical steps that 
should be undertaken to exchange UML models and ontologies between 
UML tools and Protégé.4

Fig. 11-20. UML deployment diagrams for representing relations between UML 
objects and UML classes in Poseidon 

In order to import a UML model into Protégé, you take the following 
steps:

Create an XMI file with your CASE tool (we give details of how to do 
this with selected tools below). 

                                                     
4 UML back end users’ guide at http://protege.stanford.edu/plugins/uml/use.html. 
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Choose Project > Build New Project > UML 1.4 Class Diagrams5 in
Protégé, and click OK. 
In the subsequent dialog box, click on the + button near the UML file 
name text box. 
Select the XMI file and click OK so that the name of the XMI file 
appears as the UML file name. 
Click OK to start the import process.  

In order to import a UML model developed in Poseidon, you should 
either save your project as an XMI file using the menu option File > 
Export Project to XMI or save your project as a ZUML file and then 
extract the XMI file using a zip archive extractor (e.g., WinZip). In Fig. 
11-21, we show the Musician ontology in Poseidon, which we saved as an 
XMI file. By applying the steps listed above, we have imported this UML 
model into Protégé, and resulting Protégé ontology is shown in Fig. 11-22.  

Fig. 11-21. The Musician ontology in Poseidon for UML, which we have 
imported into Protégé 

                                                     
5 Remember that we are loading UML models, not UML class diagrams. The 

wording used by Protégé is not correct.  
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Fig. 11-22. The Musician ontology after importing the UML model shown in Fig. 
11-21 into Protégé  

However, in trying to perform this operation, you might face the 
problem that your XMI files generated in Poseidon cannot be imported 
into Protégé. When we analyzed this problem, we realized that only XMI 
files that do not contain UML diagrams can be imported into Protégé. This 
means that, before exporting Poseidon models into XMI, you should first 
delete all the diagrams.6 In our experiments we used Protégé 2.1.2, since 
the UML back end was compiled for this version, even though the current 
Protégé version is 3.2. We have used versions 2.0 and 3.2 of Poseidon 
successfully in the previous example.  

 To import a UML model developed in MagicDraw, you can save your 
project as either an XMI.ZIP file, which needs to be unzipped, or as an 
XMI file. Note that the extension of the XMI file generated by MagicDraw 
is .XML. Such an XMI file can be imported into Protégé using the above 
procedure. Unlike the case for Poseidon, the UML models generated by 
MagicDraw can be imported into Protégé even if they contain UML 
diagrams. In our experiments, we used MagicDraw Community Edition 
version 9.5.  

Finally, if you want to import a UML model developed in IBM Rational 
Rose, you should first save your UML model in XMI version 1.0 using the 
XMI add-in (option Tools > UML 1.3 XMI Addin > Export), and then 
import it into Poseidon to obtain a valid UML 1.4 model. Such a UML 
model can the be imported into Protégé.  

                                                     
6 Be careful – delete only the UML diagrams, not the UML model elements. 
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Once you have imported your UML model into Protégé, you can create 
an OWL ontology using the Protégé menu option Project > Export to 
Format > OWL.

In order to perform the opposite procedure of exporting a UML model 
from Protégé, you should take the following steps: 

Save your Protégé project in your usual format (e.g., OWL) before you 
begin the export. 
Choose the Project > Convert Project to Format menu item in Protégé.  
Select UML 1.4 Class Diagrams7 as the output format and click OK. 
Choose a new project name (take care not to overwrite the current 
project).
Click OK to save the project into the specified XMI file. 
Since Protégé will reload the new project after storing the XMI file (this 
might modify your current knowledge base), you should reopen the 
original project if you want to continue working with it in the state that 
you had prior to the export procedure. 

In our experiments with Poseidon 2.0 and 3.2 and MagicDraw 9.5, we 
could import Protégé ontologies exported as XMI files. Note that the 
newly created UML classes may not be assigned to any UML class 
diagram in your target UML tool. In some tools such as Poseidon, 
apparently the only option for seeing the new UML classes after import is 
to drag the imported classes from the explorer panel into the target model. 
A similar procedure must be applied in other UML tools, which can be a 
time-consuming and very hard task, especially when you are dealing with 
a big ontology.  

Finally, we advise you to look for further details about the Protégé back 
end at its web site [Protégé UML, 2004]. Unfortunately, you must be 
prepared for many challenges when using this back end, as it is not being 
regularly maintained to keep up with new versions of Protégé and UML 
tools.

                                                     
7 The wording is again wrong! You are converting a Protégé ontology into a UML 

model, not a UML class diagram. 



12. An MDA Based Ontology Platform: AIR 

In the past few years, software engineering has witnessed two major shifts: 
model-driven engineering has entered the mainstream and some leading 
development tools have become open and extensible1. AI has always been 
a spring of new ideas that have been adopted in software engineering, but 
most of its gems have stayed buried in laboratories, available only to a 
limited number of AI practitioners. Should AI tools be integrated into 
mainstream tools and could it be done? We think that it is feasible, and that 
both communities can benefit from this integration. In fact, some efforts in 
this direction have already been made, both by major industrial 
standardization bodies such as the OMG, and by academic laboratories. In 
this chapter, we present an example of such an idea that should inspire 
readers to think about the integration of their work with the tools that are 
already in the mainstream. 

12.1 Motivation 

The basic problem of the existing environments for the development of 
intelligent systems is their narrow specialization. Most of them have been 
implemented to support only the functionalities initially envisioned– most 
often knowledge representation and reasoning. This is perfectly right from 
the intelligent systems point of view. However, real-world applications and 
their development are rarely clearly bordered in their scope; that’s why 
these environments are not enough. It is, therefore, necessary to integrate 
applications that are used for intelligent systems development into 
mainstream software platforms. This topic is going to gain more and more 
attention with the development of the Semantic Web [Berners-Lee et al., 
2001] and with increased integration of intelligent techniques in common 
information systems. 

In order to design and develop a reliable, robust, well-architectured, and 
easy-to-extend application or tool in any field, it is important to conform to 
                                                     
1 Portions of this chapter have been reprinted with minor changes, with 

permission, from [Djuri  et al., 2006a] ©2005 IEEE. 
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sound principles and rules of software engineering. Intelligent systems are 
no exception. It is especially important that AI development tools are 
designed closely following SE practices. 

Keeping an eye on current developments and trends in software 
engineering can help design AI tools to remain stable over a longer period 
of time. Some trends in software engineering are general and span many, if 
not all fields and application domains. Others are more specific, but can be 
relevant to AI. For example, a general trend in SE is the use of tailored 
versions of UML to alleviate design of system specifics, and the large 
portion of this book was about that approach. Another such trend is that of 
plug-in architectures, which allow easy and modular extension of tools and 
systems by use of features targeting specific groups of users. Probably the  
best known such platform is Eclipse (http://www.eclipse.org), a base for 
top-quality Java and UML tools. 

Another emerging SE trend that we have discussed, and which has 
intensive support from the OMG, is application development based on 
MDA [Miller & Mukerji, 2003]. MDA is a generally applicable idea, but is 
simultaneously of specific interest to AI developers since it has much in 
common with ontology modeling and development  [Devedži , 2002]. 

This chapter presents AIR [Djuri  et al., 2006a], an integrated AI 
development environment based on MDA modeling concepts. Using the 
MDA philosophy in AIR makes it possible to employ mainstream software 
technologies that users are familiar with, and expand these technologies 
with new functionalities.

The development of AIR was motivated by the fact that although AI has 
always been a source of ideas that have been subsequently adopted in 
software engineering, most of these ideas have remained in laboratories. 
We believe that AI tools should be integrated with mainstream SE tools 
and thus become more widely known and used. 

12.2 The Basic Idea 

In order to integrate intelligent technologies with common information 
system technologies and take such systems out of the laboratoriey, we 
must develop appropriate tools. These tools must be easy to use and 
powerful enough to support creation of demanding applications. The best 
solutions for such demands are tools that employ mainstream software 
technologies that users are familiar with, and expand them with new 
functionalities. This is the idea that is at the root of AIR. AIR is an 
integrated software environment for developing of intelligent systems that: 
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is based on open standards (OMG, W3C...), 
uses existing mainstream software tools and architectures, and 
is extendable and adaptable. 

Fig. 12-1. Basic structure of AIR 

We could itemize more characteristics, but these three are good 
examples of what AIR is intended to achieve. It is clear that today’s tools 
must be built according to standards if they are to succeed, so compliance 
with OMG or W3C standards is a must whenever it is possible. In view of 
the fact that AIR is an academic project, it is illusory to expect that it can 
become serious environment if it does not use existing solutions as its 
base. Such an approach would lead it away from its scope and route it 
toward reinventing the wheel. Therefore, AIR should use any existing 
solution that fits into its puzzle. As it is intended to support work with new 
technologies that are still extremely changeable, AIR must support easy 
and seamless addition of new functionalities and the replacement of 
existing parts with improved versions. Many of the technologies that it 
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aims to support are still in early phase, which means that they are 
frequently exposed to changes. AIR must be able to follow those changes. 

The basic structure of AIR is depicted in the block diagram shown in 
Fig. 12-1. The central part of AIR is a model base. Prrrimarily, this 
includes models of intelligent systems domains, but it also can include 
models of any domain that is of interest. Currently, the model base is 
implemented as a MOF-based metadata repository [Dirckze, 2002; OMG 
MOF, 2002]. It contains MOF-based metamodels and models which are 
the core of AIR. AIR must have a mechanism that enables the exchange of 
contained data with other applications. This is achieved through the MOF 
XML Metadata Interchange (XMI) format, based on XML. Such a format 
also enables easier integration with the Web. 

The other important part of AIR is an integrated development 
environment that provides a rich GUI for manipulation of models – the 
AIR workbench. This part of the AIR implementation is based on an 
Eclipse platform. The model base can be also reached from numerous tools 
that are not  part of the GUI – agents, analysis tools, utilities, etc. 

12.3 Metamodel – the Conceptual Building Block of AIR 

AIR should be able to model a large number of domains. The real world 
consists of an infinite number of concepts and facts, which we are trying to 
describe using models. Models are described using metamodels, models of 
models [Seidewitz, 2003]. Modeling and metamodeling are well-known 
terms in software engineering, and standardization in this field recently 
started to gain more attention. AIR uses a four-layer MOF-based 
metamodeling architecture in accordance with the OMG’s MDA standards. 
The basic metamodels that AIR uses and their place in this architecture are 
shown in Fig. 12-2. 

In the center of this architecture is the Meta-Object Facility (MOF), a 
meta-metamodel used for the modeling of all metamodels. Beside the 
Unified Modeling Language (UML) and the Common Warehouse 
Metamodel (CWM), metamodels usual in such an architecture, the 
important metamodels are the Ontology Definition Metamodel (ODM) and 
the Rule Definition Metamodel (RDM). For more specific purposes, such 
as Petri nets, fuzzy logic, or neural nets, specialized metamodels can also 
be included. Such metamodels should be added only if the existing models, 
the ODM for instance, lack support for some of wanted features. 
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Fig. 12-2. AIR metamodels 

The basic building block of AIR is metamodel. A metamodel enables 
the domain of a problem to be described, e.g. it supports creation of 
models that describe certain specific problems in that domain. The place of 
metamodels and their accompanying elements in the MDA architecture are 
shown in Fig. 12-3.  

A metamodel is described by the MOF, and it is located in the M2 
(metamodel) layer. To utilize the widespread support for UML tools a 
corresponding UML profile can be added. This UML profile is an 
expansion of the UML metamodel in a standard way that enables UML to 
support new concepts. It is possible to add mappings to other UML 
profiles or metamodels, which enables several kinds of model to be used to 
model one problem, where each model is capable of capturing some 
specific details of the problem. 

12.4 The AIR Metadata Repository 

The heart of any well-designed application is its domain model. AIR stores 
its domain models in the model base, which is implemented as an MOF-
based repository. The MOF specification also defines a framework for 
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implementing repositories that hold metadata (e.g., models) described by 
metamodels. Standard XML technology is used to transform metamodels 
into a metadata API, giving the framework an implementation. Figure 12-4 
shows an overview of an MOF repository and its implementation in Java. 

Fig. 12-3. A custom metamodel and UML profile 

A conceptual view of an MOF-based repository is shown in the center 
of Fig. 12-4. This reflects the MDA four-layer MOF-based architecture 
[Miller & Mukerji, 2003]. The MOF metamodel is used as a meta-
metamodel, which describes all other metamodels (including the MOF 
itself and UML). Custom metamodels can define mappings to UML, 
supported by UML profiles, which enables them to use support provided 
by UML tools.  

The OMG has  defined a standard format for platform-independent 
metadata interchange XML Metadata Interchange (XMI). This serializes 
MOF-based metamodels and models into plain text (XML), which enables 
such data to be exchanged in a standard way, and to be read by any 
platform-specific implementation. 

The Java implementation of the repository is based on Java Metadata 
Interchange (JMI) [Dirckze, 2002], a Java metadata API. On the basis of 
any MOF-based metamodel (serialized to XMI), JMI-compliant 
metamodel-specific JMI interfaces can be generated. These interfaces can 
be used to access Java metadata repository, which is implemented by Java 
classes. All data from repository can be serialized into XMI and then 
exchanged with other repositories, regardless of their implementation. It is 
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only required that they support MOF-based metadata (i.e. that they can 
“understand” the MOF XMI format). 

Fig. 12-4. Metadata repository structure (Java-based implementation) 

The reference implementation for the JMI metadata repository is 
Unisys’ CIM (http://www.unisys.com), but it seems that it has not been 
updated recently. The other implementation is NetBeans MDR 
(http://mdr.netbeans.org), a part of the open source NetBeans project. It is 
used by AIR as a metadata repository due to its generic implementation of 
JMI interfaces and frequent improvements and development. The 
NetBeans MDR implements JMI interfaces in a generic way, so any 
metamodel can be loaded from XMI and instantly implemented using Java 
reflection.

The JMI specification, which is based on version 1 of the MOF is, 
however, a little awkward to implement, so there is a competing solution 
that has lately became more popular – the Eclipse Modeling Framework 
(EMF). EMF (http://www.eclipse.org/emf) is based on ECore – a 
metametamodel similar to the  MOF (see Chapter 4 for details), which is 
simpler and more implementation-friendly. ECore is not a standard 
specification, but its larger user base makes it an ad-hoc standard. 

This multi-standard (JMI and Ecore) situation will hopefully be resolved 
with the specification of Java representation of version 2 of the MOF 
standard. MOF2 takes into account the difficulties of implementing the old 
MOF, and so it defines two separate specifications: CMOF (Complete 
MOF) and EMOF (Essential MOF), which has the ECore’s simplicity. A 
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part of AIR, the AIR Metadata Repository project (see http://www.e-
nspire.com and http://air-mds.dev.java.net) is aimed at providing an 
EMOF-based repository for MOF2-based metamodels implemented using 
a lightweight Java approach. The lightweight approach is aimed at 
lowering the dependency on the specific hierarchies or interfaces of 
standard specifications (such as JMI or EMF) and to use plain Java objects 
(POJOs) and simple interfaces for implementing metamodels. 

12.5 The AIR Workbench 

Having a good architecture is an important thing, but a nice graphical user 
interface is the part that the user deals with directly. The AIR workbench 
provides various tools with a rich GUI that make the entire workbench 
user-friendly. This workbench is built on top of the Eclipse plug-in 
architecture and Eclipse IDE (www.eclipse.org), today’s leading 
extensible platform [Gamma & Beck, 2003]. The main difference between 
Eclipse and other extensible IDEs is that Eclipse consists entirely of plug-
ins that work on a tiny platform runtime, whereas other IDEs are 
monolithic tools with some extensions. Thus, Eclipse core plug-ins are of 
equal importance as any other plug-in, including the AIR plug-ins. 

Figure 12-5 depicts the Eclipse-based AIR plug-in architecture. 
Although only the Eclipse Core is mandatory here, there is no reason not 
to utilize Eclipse UI (SWT, JFace, and Workbench), help and team 
support, so they are not discarded. Using the entire Eclipse IDE, AIR adds 
the plug-ins related to the MDR and intelligent systems – generic MDR 
support (AIR Framework, AIR NetBeans MDR, AIR MDR Core), support 
for specific metamodel (ODM, RDM, UML, CWM, etc.), and GUI-related 
support (AIR MDR Explorer). These plug-ins are inserted at extension 
points defined by plug-ins that are part of the Eclipse IDE. Being treated in 
exactly the same way as Eclipse native plug-ins, the AIR plug-ins also 
extend each other and allow future plug-ins to extend them. 

A screenshot from the AIR Workbench is shown in Fig. 12-6. The 
Explorer shows MOF-based models and metamodels graphically and 
serves as a starting point for model manipulation. By selecting an element, 
the user can reach menus specific to that element and perform various 
actions. These actions range from usual ones (instantiating, deleting, 
viewing properties etc.) to more specific ones (opening various metamodel 
specific editors, starting transformations etc.). Owing to the underlying 
Eclipse architecture, these menus can be easily extended with new items 
that can initiate new actions. 
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Fig. 12-5. Eclipse-based AIR plug-in architecture 

Fig. 12-6. An ontology in the AIR MDR Explorer 
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12.6 The Role of XML Technologies 

The importance of XML technologies is well-known to the AI community, 
especially after the introduction of the Semantic Web [Decker et al., 2000]. 
The Semantic Web architecture itself is based on XML. The standard 
Semantic Web knowledge model (RDF), as well as the language for 
specifying simple ontology vocabularies (RDFS) are defined on the top of 
XML. These two standards are the basis for the current W3C Web 
Ontology Language (OWL) recommendation. Of course, ontology 
languages are not an isolated example of applying XML in AI. For 
example, a language for sharing rules on the Semantic Web (RuleML) is 
based on XML as well. Moreover, there are several AI development tools 
that define their own XML formats for sharing their knowledge bases (e.g. 
JessGUI tool [Jovanovi  et al., 2004] creates XML knowledge bases for 
Jess, a well-known expert system shell). 

In the AIR framework, we use XMI for sharing metadata in MDA. In 
fact, XMI is not a specific XML format; it is rather a set of production 
rules that specify how one transforms a MOF-compliant model (i.e. 
metamodel and meta-metamodel) into a corresponding XML Schema and 
an XML document. Using this production principle we have a standard 
way of sharing MDA metadata by XML. Of course, there are a few 
standard XML Schemas for MOF-compliant models like the XMI schema 
for UML as well as the XML schema for MOF. However, it is necessary to 
define XML schemas for every new custom model or metamodel.  

Knowing that these two different communities (AI and MDA) both 
employ XML, we could bridge the gap between them using XML. Since 
they use different XML formats we should define transformations between 
them. XSLT is coming as a natural solution to this problem. XSLT is a 
standard language for transforming XML documents into other documents, 
either XML or regular text. In Chapter 11 illustrates how we support 
model sharing between a UML tool (Poseidon for UML that uses UML 
XMI) and an ontology editor (Protégé, i.e. its OWL plug-in). Applying this 
XSLT principle we do not have to change (i.e. reprogram and recompile) 
an existing tool, but we just develop an auxiliary tool (i.e. an XSLT) that 
extends the existing functionalities. For the further discussion on mappings 
between ontology and MDA-based languages we refer readers to Chap. 11. 
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12.7 Possibilities 

Bringing AI and SE close together results in well-engineered AI systems 
with a firm SE backbone. There are a number of possibilities for achieving 
such a synergy. At one extreme there are disciplined approaches with low 
"coupling", such as developing and using an API for building AI systems 
(like in OKBC) or merely using UML-based CASE tools in the process of 
designing AI systems. At the other extreme,, there are integrated AI 
development tools. In between, there are other opportunities to add more 
SE flavor to AI systems development. One can use a suite of tools instead 
of a complicated integrated tool, or extend the basic tool with a number of 
useful plug-ins, possibly with the idea of evolving the basic tool into a 
framework.  

Using the MDA, UML, and MOF standards developed by the OMG is 
yet another possibility. True, it does take some time for AI developers to 
get used to it. In the long run, it does pay off as well. At its core are 
standard SE tools and XML technologies that many developers are 
familiar with. Due to MOF, it enables integration at the metamodeling 
level, which is related to ontological engineering. It also enables a smooth 
and gradual transition between the traditional and emerging modeling 
styles and paradigms. 

Integrating AI and SE tools and approaches is something that both sides 
can benefit from. Yet, academic tools are only a preview of what will be 
common in the future. Even the MDA has problems in attracting the 
majority of software developers and being well implemented by tools. 
Ontologies are also a new approach that is waiting for the spotlight of the 
mainstream community. One thing is sure: there are lots of similarities in 
AI (in this case, Knowledge engineering) and SE (in this case, the MDA) 
approaches and their lifecycle could be parallel. Building tools that benefit 
from the knowledge and experience of both communities is just a logical 
sequel.



13. Examples of Ontology  

In the previous chapters we introduced the basic concepts of MOF-based 
languages for developing ontologies, such as the Ontology Definition 
Metamodel (ODM) and the Ontology UML Profile (OUP). We also dis-
cussed mappings between those languages and the OWL language. The 
purpose of this chapter is to illustrate the use of MOF-based languages for 
developing real-world ontologies. Here we discuss two different ontologies 
that we developed in different domains. The first example is a Petri net on-
tology that formalizes the representation of Petri nets, a well-known tool 
for modeling, simulation, and analysis of systems and processes. This Petri 
net ontology overcomes the syntactic constraints of the present XML-
based standard for sharing Petri net models, namely Petri Net Markup 
Language. The second example covers issues in the e-learning domain. 
The case analyzed provides a foundation for ontologies for bridging be-
tween two very important fields in e-learning: learning objects and learn-
ing design. Whereas learning objects represent any kind of digital or non-
digital content that can be used in technology-supported learning, learning 
design tries to describe the activities, methods, roles, objectives, and re-
sources in a learning process. By describing both fields with ontologies, 
we enable the development of Semantic Web services such as searching 
for a suitable teaching method on basis of  the specific content to be 
taught.

In both examples presented in this chapter we used the GOOD OLD AI 
Ontology UML Profile to develop the ontologies, because the XSLT that 
we described earlier, which is provided as supplementary material to this 
book, can transform such models into an OWL representation. Such OWL 
ontologies can be imported into the Protégé ontology editor and edited, as 
we have described earlier when describing the XSLT. 

13.1 Petri Net Ontology 

Petri nets are formal  tool for the modeling, simulation, and analysis of 
various kinds of systems [Petri, 1962]. These may be distributed systems, 
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communication protocols, multiprocessor systems, Web services, agent 
systems, object-oriented systems, or adaptive hypermedia systems, to 
name but a few of the present uses of Petri net. A Petri net graph consists 
of two types of nodes: places and transitions. Figure 13-1 shows an exam-
ple of a Petri net model. In this figure, places are represented by circles, 
and transitions by rectangles. These two types of nodes are connected by 
directed arcs, in such a way that only nodes of different types can be con-
nected (i.e., a place and a transition). Each Petri net place may have zero or 
more tokens (e.g., Buffer  has two in Fig. 13-1). Tokens support the dy-
namic nature of Petri nets; they are a feature used to simulate systems. The 
simulation involves the firing of transitions. A Petri net transition (e.g., Put 
in buffer) can be fired if each of its input places (e.g., ID:p1) has one or 
more tokens. After the transition has been fired, the tokens are removed 
from the input places (e.g., ID:p2 and Buffer) of the transition, and tokens 
are generated in the output places. 

Fig. 13-1. An example of a Petri net model: the well-known synchronization prob-
lem of a consumer and producer 

Note that Petri nets have evolved from their initial definition given in 
[Petri, 1962]. One of the most important characteristics of Petri nets is that 
we have specific extensions for each type of application. Such extensions 
are called Petri net dialects, kinds, or types. Some examples of Petri net 
dialects are: time Petri nets, colored Petri nets, object-oriented Petri nets, 
and upgraded Petri nets. The basic type of Petri nets is that of P/T nets, and 
they are basic type for other Petri net dialects [Reisig, 1985].  

Currently, interoperability between Petri nets is possible at the level of 
the syntax for model sharing. Petri Net Markup Language (PNML) [Bill-
ington et al., 2003] is a result of a recent effort by the Petri net community 
aimed at providing XML-based model sharing. PNML is intended to be a 
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part of the future ISO/IEC high-level Petri net standard [Petri Net Stan-
dards, 2005]. However, this initiative is also syntactically oriented, i.e., it 
introduces some constraints that enable the validation of documents 
against their definition (e.g., validating whether an arc connects two nodes 
of different types, i.e., a place and a transition).  In order to overcome these 
issues, we have developed a Petri net ontology using the GOOD OLD AI 
Ontology UML Profile that was later transformed into OWL. 

13.1.1 Organization of the Petri Net Ontology 

We defined our Petri net ontology using experience from previous formal 
description of Petri net (metamodel, ontologies, and syntax) [Gaševi  & 
Devedži , 2004; Gaševi  & Devedži , 2005]. These descriptions indicate 
very useful directions for selecting key concepts of Petri nets and specify-
ing their mutual relations. PNML is of primary importance here – it is 
closely related to the Petri net ontology. We enhanced the usability of 
PNML by defining mappings to and from Semantic Web languages (RDF 
and OWL). 

Having in mind the extensible nature of Petri nets and of many Petri net 
dialects, the Petri net ontology has been organized to have a common part 
that contains concepts common to all Petri net dialects. This common part 
may be specialized to a concrete Petri net dialect. In fact, this is the same 
principle that PNML is based on [Billington et al., 2003]. In Fig. 13-2, we 
show the common part of Petri net ontology, which we call the core Petri 
net ontology. The core Petri net ontology was extracted from the ontology 
sources that we analyzed. 

We have introduced some concepts that do not really exist in Petri net 
models in order to obtain a more suitable concept hierarchy in the core on-
tology. We call these concepts “synthetic concepts.” An overview of these 
concepts is given in Table 13-1. The meanings of some of the Petri net 
concepts referred to in the table (e.g., module and structural element) are 
clarified in Sect. 13.1.2. In that subsection, we also describe how the Petri 
net ontology has been defined using UML and the Protégé ontology devel-
opment tool. 
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Net
 place (0..*) 
 transition (0..*) 
 page (0..*) 
 place  reference (0..*) 
 transition reference (0..*) 
 module instance (0..*) 

Place
 name (1) 
 marking  (1) 
 initial marking (1) 
 position  (1) 

Transition 
 name (1) 
 position (1) 

Arc
 from node (1) 
 to node (1) 
 position (0..*) 
 mulitiplicity (1) 

Page
 place (0..*) 
 transition (0..*) 
 page (0..*) 
 place  reference (0..*) 
 transition reference (0..*) 
 module instance (0..*) 

Module 
 name (1) 
 place (0..*) 
 transition (0..*) 
 arc (0..*) 
 page (0..*) 
 place  reference (0..*) 
 transition reference (0..*) 
 module instance (0..*) 
 module interface (1) 

Module instance
 name (1) 
 place (0..*) 
 transition (0..*) 
 arc (0..*) 
 page (0..*) 
 place  reference (0..*) 
 transition reference (0..*) 
 module instance (0..*) 
 module interface (1)

Module interface 
 input (0..*) 
 output (0..*) 

Place reference 
 reference (1) 
 name (1) 
 position (1) 

Transition reference 
 reference (1) 
 name (1) 
 position (1) 

Graphical information 
 position (1) 
 font style (1) 
 color (1) 
 ... 

Marking 
 token (0..*) 
 graphical information (1) 

Initial marking 
 token (0..*) 
 graphical information (1) 

Name 
 graphical information (1) 

Token 
–

Multiplicity 
 graphical information (1)

Fig. 13-2. Organization of the core Petri net ontology: key concepts, their mutual 
relations, and their cardinality 

Table 13-1. Overview of the synthetic concepts in the core Petri net ontology, 
which are generalizations of the concepts in Fig. 13-2 

Synthetic concept Concepts generalized 

Node reference  Place reference, transition reference  

Node Place, transition, node reference 

Structural element Page, module instance 

Model element Structural element, arc, node 



13.1  Petri Net Ontology      271 

For the development of the ontology we used the GOOD OLD AI On-
tology UML Profile (OUP) given in [Djuri  et al., 2005b]. Using this 
OUP, one can represent relations between the core concepts of the Petri net 
ontology and the specifics of a Petri net dialect. To do this, we suggest us-
ing the OUP’s package mechanism. In the OUP, we attach <<ontol-
ogy>> to a package. That means that the package is an ontology. Accord-
ingly, we have put all core concepts of the Petri net ontology in an 
<<ontology>> package. If we wish to extend the Petri net ontology with 
concepts from a Petri net dialect, we only need to create a new <<ontol-
ogy>>, related to the core <<ontology>> through the <<imports>>
dependency. We illustrate this extension principle in Fig. 13-3.

Fig. 13-3. Extension mechanism of the Petri net ontology: support for Petri net 
dialects

This example depicts how we can extend the core Petri net ontology 
(<<ontology>> Petri net core) with concepts from upgraded and time 
Petri nets (i.e., we attach new properties to the core classes to describe a 
Petri net dialect). An additional advantage of this approach is that we have 
the ability to merge concepts from a number of ontologies (i.e., <<ontol-
ogy>> packages). As a result, we obtain one ontology definition, which ca 
be expressed, for instance, in OWL (by applying an XSLT). Comparing 
our approach with the current PNML proposal for Petri Net Definition 
Types [Billington et al., 2003], one can see that our approach improves the 
maintainability of Petri net concepts, and better supports reusability of the 
concepts in the Petri net ontology. So far, we have defined extensions of 
the Petri net ontology for: P/T nets, time Petri nets, and upgraded Petri 
nets.
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13.1.2 The Core Petri Net Ontology in the Ontology UML Profile 

In the core Petri net ontology package, we have defined all of the concepts, 
properties, relations, and restrictions shown in Table 13-1 and Fig. 13-2. 
The core Petri net hierarchy is shown in Fig. 13-4. We have defined all re-
lations among classes in the Petri net ontology using the <<Object-
Property>> stereotype. 

Fig. 13-4. Class hierarchy of the Petri net ontology, shown in the Ontology UML 
Profile

Figure 13-5 shows how the <<ObjectProperty>> name is defined as 
a graphical feature. In this case, the name property has as its range 
(through the <<range>> association) the NameDescriptor <<Ont-
Class>>. However, this class is inherited from GraphicalFeature.
GraphicalFeature was introduced to the Petri net ontology as the root class 
for all of the classes that constitute the range of a graphical feature. Simi-
larly, we have defined other graphical features (e.g., marking). In addition, 
the name property has a domain Net and Node.

Figure 13-6 illustrates how we have related the ModelElement class to 
the StructuralElement, Net, and Module classes. In fact, we have defined 
the <<ObjectProperty>> stereotype element, whose range is the Mod-
elElement class. On the other hand, the domain of this property is the fol-
lowing classes: Module, StructuralElement, and Net.



13.1  Petri Net Ontology      273 

Fig. 13-5. An example of a graphical feature defined in the Ontology UML Pro-
file: the name object property 

Fig. 13-6. The collections of elements of the Petri net model that contain the 
StructuralElement, Module, and Net classes, modeled by <<ObjectProperty>>
stereotype element

Figure 13-4 shows that the PlaceReference and TransitionReference
classes are inherited from the NodeReference class and inherit its reference
object property. This property is defined to have its range in the Node and 
NodeReference classes. However, the PlaceReference and Transition-
Reference classes have an additional restriction on the reference property. 
That is to say, this may only take values from the Place and PlaceRefer-
ence classes when it is a property of the PlaceReference class. Similarly, it 
may only take values from the Transition and TransitionReference classes 
when it is a property of the TransitionReference class. In Fig. 13-7, we 
show how this restriction is defined for the PlaceReference class. Using 
the <<allValuesFrom>> association stereotype, we have defined that 
the PlaceReference class to have a <<Restriction>>. The <<allVal-
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uesFrom>> association stereotype means that a property with this restric-
tion for a specific class must take values from a specific set. Using two de-
pendency stereotypes, we have specified that this restriction is defined on 
the property reference (<<onProperty>> reference), and that it must 
take <<allValuesFrom>> the <<Union>> of the Place and
PlaceReference classes. 

Fig. 13-7. The restriction that the reference property of the PlaceReference class 
must have all of its values from the union of the Place and PlaceReference classes 

Figure 13-8 shows an excerpt from the Petri net ontology expressed in 
OWL. It was generated using an XSLT for transformation from the OUP 
ontology (i.e., XMI) to OWL. The figure illustrates part of the OWL Tran-
sitionReference restriction on the reference property. This restriction states 
that TransitionReference’s property reference must take all of its values 
from (allValuesFrom) the union of the classes Transition and Transition-
Reference.

 <owl:Class rdf:ID="PlaceReference"> 
  <rdfs:subClassOf rdf:resource="#NodeReference"/> 
  <rdfs:subClassOf> 
   <owl:Restriction> 
    <owl:onProperty rdf:resource="#reference"/> 
    <owl:allValuesFrom> 
     <owl:Class> 
      <owl:unionOf rdf:parseType="Collection"> 
       <owl:Class rdf:about="#Place"/> 
       <owl:Class rdf:about="#PlaceReference"/> 
      </owl:unionOf> 
     </owl:Class> 
    </owl:allValuesFrom> 
   </owl:Restriction> 
  </rdfs:subClassOf> 
 </owl:Class> 

Fig. 13-8. Part of the Petri net ontology in OWL: the TransitionReference class re-
striction
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13.1.3 Example of an Extension: Upgraded Petri Nets 

Here we illustrate an ontology that describes upgraded Petri nets (a Petri 
net dialect for modeling hardware) [Štrbac, 2002] in order to show how the 
Petri net ontology can be extended. The same procedure can be applied to 
describe other Petri net dialects (e.g., time Petri nets and colored Petri 
nets). Figure 13-9 shows the concepts that need to be introduced into the 
ontology in order to support upgraded Petri nets. Most of these concepts 
are ontology properties: attribute X and attribute Y are graphical features 
of the Place class; function, function firing level, and time function are fea-
tures of the Transition class; and typeArc is a feature of the Arc class. The 
extension of the ontology for upgraded Petri nets also requires a restriction 
on the Arc class: an arc can only connect a place and a transition. 

Core ontology 
concepts PLACE TRANSITION ARC 

Upgraded Petri 
net extensions 

attribute X – 
graphical feature
attribute Y –
graphical feature 

function – property
function firing level – 
property
time function  – prop-
erty

an arc can only con-
nect a place and a 
transition – restriction
typeArc – property

Fig. 13-9. The relation between the core Petri net concepts and their extensions for 
upgraded Petri nets 

In terms of the OUP, this extension means that we have a new <<on-
tology>> package, which contains all concepts and restrictions specific 
to upgraded Petri nets. Figure 13-10 shows how we have attached the 
typeArc property to the Arc class. In fact, the domain of the typeArc prop-
erty is Arc, whereas the enumeration ArcType is the range of the typeArc.
The enumeration ArcType consists of four individuals: “normal,” “inhibi-
tor,” “reset,” and “read.”

Having introduced all concepts and restrictions for upgraded Petri nets 
in the OUP model, we can generate its OWL equivalent using an XSLT. 
Figure 13-11 contains an excerpt from the OWL ontology generated for 
the Arc class. On the left side (Fig. 13-11a), we show the definition of the 
Arc class for the core Petri net ontology. On the right side (Fig. 13-11b), 
we show an excerpt form the corresponding definition in the ontology for 
upgraded Petri nets. It should be noted that Fig. 13-11b depicts only how 
the typeArc property is added in the OWL ontology. First, we added the 
typeArc property as a definition of a new object property, which has the 
Arc class as its domain and the ArcType class as its range. ArcType is an 
enumeration that consists of the individuals we have already mentioned. 
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The Arc class has only a cardinality restriction on the typeArc property. 
Note that the Arc class for upgraded Petri nets contains all of the definition 
of the Arc class in the core Petri net ontology (i.e., the definition shown in 
Fig. 13-11a). Then, following the same principle, the XSLT converter pro-
duced the other parts of the OWL ontology for upgraded Petri nets. 

Fig. 13-10. An extension of the Arc class for upgraded Petri nets: the typeArc 
property with its range (the enumeration of the following values: “normal,” “in-
hibitor,” “reset,” and “read”) 

<owl:Class rdf:ID="Arc"> 
 <rdfs:subClassOf rdf:resource="#ModelElement"/> 
 <rdfs:subClassOf> 
  <owl:Restriction> 
   <owl:onProperty rdf:resource="#multiplicity"/> 

<owl:maxCardinality  
rdf:datatype="&xsd;#nonNegativeInteger"> 

   1</owl:maxCardinality> 
  </owl:Restriction> 
 </rdfs:subClassOf> 
 <rdfs:subClassOf> 
  <owl:Restriction> 
   <owl:onProperty rdf:resource="#fromNode"/> 
   <owl:cardinality  
   rdf:datatype="&xsd;#nonNegativeInteger"> 
   1</owl:cardinality> 
  </owl:Restriction> 
 </rdfs:subClassOf> 
 <rdfs:subClassOf> 
  <owl:Restriction> 
   <owl:onProperty rdf:resource="#toNode"/> 
   <owl:cardinality rdf:datatype= 
   "&xsd;#nonNegativeInteger"> 
   1</owl:cardinality> 
  </owl:Restriction> 
 </rdfs:subClassOf> 
</owl:Class> 

<owl:ObjectProperty rdf:ID="typeArc"> 
  <rdfs:range rdf:resource="#ArcType"/> 
  <rdfs:domain rdf:resource="#Arc"/> 
 </owl:ObjectProperty> 

<owl:Class rdf:ID="ArcType"> 
 <owl:oneOf rdf:parseType="Collection"> 
  <ArcType rdf:about="#normal"/> 
  <ArcType rdf:about="#inhibitor"/> 
  <ArcType rdf:about="#reset"/> 
  <ArcType rdf:about="#read"/> 
 </owl:oneOf> 
</owl:Class> 
<ArcType rdf:ID="normal"/> 
<ArcType rdf:ID="inhibitor"/> 
<ArcType rdf:ID="reset"/> 
<ArcType rdf:ID="read"/> 
<owl:Class rdf:ID="Arc"> 

<!-- This extended Arc class has the same content  
as the Arc class in the Core Petri net ontology plus  
the following content: --> 

 <rdfs:subClassOf> 
  <owl:Restriction> 
   <owl:onProperty rdf:resource="#typeArc"/> 
   <owl:maxCardinality 
   rdf:datatype="&xsd;#nonNegativeInteger"> 
   1</owl:maxCardinality> 
  </owl:Restriction> 
 </rdfs:subClassOf> 

<!--Restriction that an arc can only connect a place 
and transition-->  

</owl:Class> 
a) b) 

Fig. 13-11. OWL definition of the Arc class: (a) for the core Petri net ontology; 
(b) for the ontology of upgraded Petri nets 
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Figure 13-12 shows how we have extended the Place class. We have 
added the attributeX and attributeY properties, so that each instance of the 
Place class may have instances of those properties. The ranges of attrib-
uteX and attributeY are AttributeXDescriptor and AttributeYDescriptor
classes, respectively. Using the same principle, we have introduced two 
other datatype properties, namely firingLevel (Integer) and functionName
(String).

Fig. 13-12. Attaching the attributeX and attributeY properties to the Place class 

Fig. 13-13. An extension of the ontology regarding the Arc class that additionally 
restricts this class: an arc only may connect a transition and a place. This restric-
tion is represented in the OUP that can be transformed to OWL using an XSLT 
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Figure 13-13 shows how we have put a restriction on a Petri net arc us-
ing the Ontology UML Profile. Note that this restriction is not part of the 
core Petri net ontology, since it is not a generally applicable rule for all 
Petri net dialects. However, most Petri net dialects have this restriction, 
and hence we have applied it here. 

This restriction means that a Petri net arc (<<OntClass>> Arc) may 
connect only a Place and a Transition. This statement is expressed as a un-
ion (<<Union>>) of two intersections (<<Intersection>>). Our 
<<OntClass>> Arc is an equivalent class (<<equivalentClass>>)
of this union. Since these two intersections are defined in a symmetric 
way, we shall describe only the left-hand one in Fig. 13-13. This intersec-
tion says that an Arc takes all its values from (<<allValuesFrom>> as-
sociation) <<OntClass>> Place for the fromNode property and from 
<<OntClass>> Transition for the toNode property. The second (right) 
intersection specifies the opposite statement: Arc’s toNode property takes 
all its values from Place, and Arc’s fromNode property takes all its values 
from Transition.

13.2 Educational Ontologies1

Specifying reusable chunks of learning content and defining an abstract 
way of describing designs for various units of learning (e.g., courses and 
lessons) are two of the most current research issues in the e-learning com-
munity. One field of research in this area is that of learning objects. 
Among the many important definitions of learning objects such as [Barrit 
et al., 1999; Richards, 2002; Wiley, 2002], we refer to a very broad defini-
tion [Duval, 2002]: A learning object is any entity, digital or nondigital, 
that can be used, reused, or referenced during technology-supported learn-
ing. As a result of research in that field we have the IEEE Learning Object 
Metadata (LOM) standard, which is a standardized set of metadata fields 
(e.g., title, description and category) that describe learning objects. How-
ever, in addition to this vague definition, learning objects suffer from a 
lack of ability to semantically express relations among different types of 
objects in the context of their use in an educational setting [Koper, 2001]. 
Accordingly, there is a second field of research referred to as learning de-
sign, which can be defined as the application of a pedagogical model to a 
specific learning objective, a specific target group, and a specific context 

                                                     
1 Portions reprinted with minor changes, with permission, from [Knight et al., 

2006].
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or knowledge domain [Koper & Olivier, 2004]. As a response to these ac-
tivities, there has been an initiative by IMS to define learning design-
related recommendations [IMS LD IM, 2003]. 

Although the two aforementioned initiatives are interrelated, some ques-
tions still have to be answered, such as the following: How can we employ 
just some specific parts of a learning object, rather than the learning object 
as a whole in a specific learning design? How can we reuse the same learn-
ing design in different contexts with different learning objects? How can 
we personalize the content of the same learning object according to learn-
ers’ models in the same learning design? How can we develop more exten-
sive search and ranking services for learning objects and learning designs? 

To address these problems, we have developed a set of ontologies to 
link learning designs and learning content.2 The use cases that have driven 
our efforts involve enabling teachers to reuse learning designs not through 
complete automation of the process, but through better search services. 

13.2.1 Conceptual Solution 

We start from the premise that learning design offers tremendous potential 
for content repurposing. Starting with some educational content in the 
form of learning objects (including images, text, and animations) and some 
Web-based learning support services (chat, messaging, and multiple-
choice tests), learning designs can choreograph the order in which the con-
tent will be presented, how it will be integrated into learning support ser-
vices, how it will be sequenced, and how it will be assigned to learners in a 
lesson. Conceptually, this can be pictured as pulling learning objects from 
a repository and using the learning designs to integrate the learning objects 
into activities that involve the learners. In fact, one can regard a learning 
design as a kind of workflow chain definition specifying what activities 
learners will be involved in and what learning objects will be used in those 
activities. The IMS-LD specification [IMS LD IM, 2003] provides a capa-
bility to reference external learning objects through URI property elements 
and keep a clear separation between the learning design and the content 
being referenced. 

When learning objects are incorporated into a learning design, there 
may be many possible learning objects to choose from. A course author 

                                                     
2 We are very grateful to our colleagues Colin Knight and Griff Richards at Simon 

Fraser University, Canada, Jelena Jovanovi  at the University of Belgrade, Ser-
bia and Montenegro, and Katrien Verbert at the Katholieke Universiteit Leuven, 
Belgium, for helping us write this section on educational ontologies.  
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will be able to automatically search through learning object repositories for 
suitable content. Ideally, the learning objects will contain metadata that 
will help the course author to identify the most suitable content for a spe-
cific purpose. However, this assumes that the learning object will have a 
single instructional context for which it can be useful. From the standpoint 
of learning object reuse, it would be advantageous for a learning object to 
have many different uses, so that expensive multimedia content elements 
could be reused in as many different learning objects as possible. For ex-
ample, a learning object that contains pictures of the Acropolis could be 
used for both a grade 10 art course and a university-level history course. 

The optimal way to facilitate the integration of learning objects into a 
learning design without compromising reusability is to treat the contexts 
for learning objects (learning object contexts, or LOCs) as distinct entities 
from the learning objects themselves, as shown in Fig. 13-14. The learning 
objects exist independently of any presupposed instructional context, 
meaning that they can be used in any situation in which a course author 
finds them useful. Within an extensive domain of many different instruc-
tional contexts, many different LOCs can be created and associated with 
learning objects in a many-to-many relationship. If a course author decides 
that a particular learning object is useful in a grade 7 biology course, a new 
context object is created associating that learning object with that specific 
context.

If we annotate the learning object with context information such as the 
prerequisites and competencies applicable to the learning object in a grade 
7 biology course, we establish an implied ownership relation. In this case, 
the learning object can be owned by learning designs that target seventh-
grade biology or an equivalent course. If we instead choose to include the 
information in the learning design, the learning design will be tied to a par-
ticular context, which reduces its reusability. Looking again at Fig. 13-14, 
we see the domain of instructional contexts. This shaded background 
represents all of the possible ways a given learning design could be used in 
practice. The learning objects remain outside this domain, so that they can 
be used by other learning designs in other contexts. In fact, a new LOC is 
created by associating any such learning object with a specific context. 

An LOC would contain data that was specific to a single learning object 
in a particular instructional context. Learning objectives, competencies, 
and the evaluation would be stored in this object as opposed to the learning 
object, so that the learning object could be associated with multiple LOCs 
and various learning objectives, competencies, and evaluations. The LOC 
could also contain context-specific information about the subject domain 
ontology, since the specification of subject domain annotations will be de-
pendent on the context. 
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Fig. 13-14. Learning object contexts: a conceptual model 

13.2.2 Mapping the Conceptual Model to Ontologies 

In our efforts to provide an explicit specification (i.e., ontology) of the 
conceptual model depicted in Fig. 13-14 we have identified a need for the 
following three ontologies: (a) an ontology of learning object content, (b) 
an ontology of learning design, and (c) an ontology connecting those two 
ontologies. In the remainder of this section, we describe each of these on-
tologies in detail. 

Learning Object Content Ontology 

Having looked at several content models (e.g., Learnativity, the SCORM 
content aggregation model, CISCO RLO/RIO, and NETg), we decided to 
use the Abstract Learning Object Content Model (ALOCoM), the result of 
a recent EU ProLearn NoE project [Verbert et al., 2004], as a basis for an 
ontology that describes learning object content. The ALOCoM was de-
signed to generalize all of the other content models mentioned, to provide 
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an ontology-based platform for integrating various content models, and to 
enable (semi-)automatic reuse of components of learning objects by ex-
plicitly defining their structure [Sheth et al., 2005].  

On top of that model, we built an ontology called the ALOCoM ontol-
ogy [Jovanovi  et al., 2005b]. This ontology is divided into two parts 
[Jovanovi  et al., 2005a]: 

the ALOCoM Content Structure (CS) ontology, which enables a formal 
representation of learning objects decomposed into components; 
the ALOCoM Content Type (CT) ontology, which defines the educa-
tional role of learning objects and their components. 

In Fig. 13-15, we show the relation and organization of the ontologies rep-
resenting the ALOCoM. 

Fig. 13-15. Organization of the ALOCoM ontologies: the ALOCoM Content 
Structure ontology, the ALOCoM Content Type ontology, and an extension of 
these two ontologies (ALOCoM Slide)  

The organization of the ALOCoM ontology was inspired by the IBM Dar-
win Information Typing Architecture (DITA), which contains a core part 
with general-purpose concepts (e.g., text, paragraph, list, ordered list, list 
item, and table) that can be extended depending on the specific needs of the 
author or user. Therefore, we organized the ALOCoM ontology as an exten-
sible infrastructure consisting of a core part (containing the ALOCoM CS 
and ALOCoM CT packages, i.e., ontologies) with concepts common to all 
types of learning objects and an unlimited number of extensions, each exten-
sion supporting one specific type of learning object (e.g., the ALOCoM Slide 
ontology, which defines concepts specifics to slide presentations). 
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The ALOCoM Content Structure ontology distinguishes between Con-
tentFragments (CFs), ContentObjects (COs), and LearningObjects (LOs) 
(see Fig. 13-16). CFs are content units in their most basic form, such as 
text, audio, and video. These elements can be regarded as raw digital re-
sources and cannot be further decomposed. Navigational elements enable 
the sequencing of content fragments in a content object. Besides CFs, COs 
can also include other COs. LOs aggregate COs around a learning objec-
tive. Finally, the ontology defines aggregational and navigational relation-
ships between content units. Aggregation relationships are represented in 
the form of the hasPart property and its inverse isPartOf. Navigational re-
lationships are specified by an ordering property that defines the order of 
components in a CO or LO in the form of an rdf:List.

Fig. 13-16. A sketch of the major properties of the ALOCoM ontology 

The ALOCoM ontology defines a number of CF types, divided into two 
main categories of continuous and discrete CFs (see Fig. 13-17). Accord-
ingly, we extended the ContentFragment class of the ontology with the 
ContinuousCF and DiscreteCF classes, respectively representing these two 
main CF types. The DiscreteCF class is specialized further into Text, Im-
age, and Graphic classes, while the ContinuousCF class is extended with 
Audio, Video, Animation, and Simulation classes. 

In addition, we extended the ContentObject class of the core ontology 
with a number of classes representing various kinds of COs that can be 
part of almost any type of LO. We based those classes on elements of 
DITA. One ontology class has been introduced for each DITA element that 
we found appropriate for describing content units typical of the learning 



284       13.  Examples of Ontology 

domain. Accordingly, many of the DITA building blocks, such as section,
paragraph, and list, are included in the core ontology as either direct or in-
direct subclasses of the ContentObject class. We did not include those 
DITA elements that are related to presentation, such as the searchtitle ele-
ment, which is used when transforming a DITA element to XHTML to create 
a title element at the top of the resulting HTML file. 

Fig. 13-17. The hierarchy of the ContentFragment class 

The ALOCoM CT ontology is also rooted in the ALOCoM and has CF, 
CO, and LO as basic, abstract content types. However, these concepts are 
now regarded from perspective of educational/instructional roles they 
might have. Therefore, concepts such as Definition, Example, Exercise,
and Reference have been introduced as subclasses of the ContentObject
class (see Fig. 13-18), whereas concepts such as Tutorial, Lesson, and Test
are some of the subclasses of the LearningObject class. The creation of 
this ontology was mostly inspired by a thorough examination of existing 
learning object content models [Verbert & Duval, 2004] by closely related 
work presented in [Ullrich, 2005]. The concepts defined in this ontology 
are used as values for the Learning Resource Type element of the IEEE 
LOM standard.

In Fig. 13-19a we show how we have extended the ALOCoM core con-
cepts to support slide presentations, and Fig. 13-19b illustrates how we 
have extended the hasPart property in the SlidePresentation class, so that 
it may only take values that are instances of the Slide class. 
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Fig. 13-18. Part of the ALOCoM Content Type ontology: the ContentObject class 
and its subclasses 

LOCO – an Ontology Compatible with IMS-LD 

The IMS-LD Information Model and its XML binding are a specification 
for learning design [IMS LD IM, 2003]. As many of the tools and editors 
for learning design will be developed around this specification, it is impor-
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tant to maintain compatibility. We have used the IMS-LD Information 
Model as a blueprint for the creation of an IMS-LD-based ontology named 
the Learning Object Context Ontology (LOCO). To create the LOCO, we 
needed to make some changes to the IMS-LD Information Model [IMS LD 
IM, 2003] in order to conform to established good-practice recommenda-
tions for ontology design [Noy et al., 2001], and to resolve some ambigui-
ties and inconsistencies in the information model. We have reported these 
inconsistencies in detail in [Knight et al., 2006]. 

a) b) 

Fig. 13-19. Extension of the ALOCoM to support slide presentations (a), and the 
additional restriction on the hasPart property (b) 

Figure 13-20 shows the LOCO’s classes and their inheritance relation-
ships, expressed in the GOOD OLD AI OUP. The main emphasis is on the 
Learning_object class, since our goal is to make a connection between 
learning content (e.g., represented in the ALOCoM ontology by the Learn-
ingObject class) and learning design (i.e., the LOCO). In the LOCO, the 
Learning_object class is a subclass of the ResourceDescription class. Ac-
cordingly, the Learning_object class inherits the following properties from 
the ResourceDescription class (see Fig. 13-21): item, metadata, title, and 
hasResource. 

Let us describe the hasResource property in order to illustrate one of the 
class properties of the LOCO (see Fig. 13-22). Initially, the range of the 
hasResource property is the Resource class. However, according to the 
IMS-LD specification, we have to restrict this range, so that the range is a 
union of the web_content and Imsld_content classes (i.e., hasResource in 
the class Learning_object can take values that are instances of the 
web_content and Imsld_content classes). Additionally, the Learn-
ing_object class has the hasLearning_object property, which allows learn-
ing objects to aggregate other learning objects. 
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Fig. 13-20. Class organization of the LOCO 

Fig. 13-21. The properties of the Resource class in the LOCO 
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Fig. 13-22. The properties of and restriction on the Learning_object class in the 
LOCO

LOCO-Cite – an Ontology for Bridging the Learning Object Content 
and Learning Design Ontologies 

The final step is to create an ontology that serves as a bridge linking the 
LOCO and the ALOCoM ontology in accordance with the conceptual 
model of learning object contexts shown in Fig. 13-14. Because this makes 
an explicit reference to a specific learning object, we have named this on-
tology LOCO-Cite. The LOCO and the ALOCoM ontology must be re-
lated to each other through LOCO-Cite, which links properties and classes 
across the boundaries of the individual ontologies to create a larger, uni-
fied ontology. Considering the constraints of the current versions of Pro-
tégé, which are not designed to work with multiple ontologies in the same 
view, we found the use of the OUP to be a suitable solution to this prob-
lem. Figure 13-23 shows how we organized the ontologies in order to con-
nect the ALOCoM ontology and the LOCO, and thus the representation of 
learning objects and learning designs. 

Fig. 13-23. Connecting the ALOCoM ontology and the LOCO through the 
LOCO-Cite ontology 
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Figure 13-24 indicates how the LearningObjectContext class in the LOCO-
Cite ontology is linked to related concepts from both the LOCO (the 
Learning_object class in Fig. 13-20 and Fig. 13-22) and the ALOCoM 
Content Structure ontology (the LearningObject class in Fig. 13-16). First, 
we have defined a relation between the LOCO-Cite ontology and the 
ALOCoM ontology by saying that the LearningObjectContext class in 
LOCO-Cite is an equivalentClass to the LearningObject class in the 
ALOCoM ontology. Then, we have created a relation between the LOCO-
Cite ontology and the LOCO through the hasLearningObject property of 
LOCO-Cite’s Learning_object class, whose range is the LearningObject
class in the ALOCoM Content Structure ontology. 

Fig. 13-24. Linking the LOCO and the ALOCoM ontology by introducing the 
LearningObjectContext class and the hasLearningObject into the LOCO-Cite on-
tology

All ontologies defined by the OUP (ALOCOM, LOCO, and LOCO-Cite 
in the present case) can be transformed into their OWL equivalents using 
the XSLT that we developed, as we have already illustrated for the Petri 
net ontology. 

Having defined the above ontology-based framework for bridging learn-
ing objects and learning designs, we have provided an infrastructure for 
potential semantic services such as: 

employing descriptions of learning designs and learning objects by on-
tologies to search and reuse them, either as a whole or as disaggregated 
components; 
finding the most suitable teaching method stored in learning design re-
positories on the basis of specific competencies; 
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personalizing learning objects according to the learners’ profiles within 
a specific learning design by employing an ontology-based description 
of learning object content; and 
ranking learning designs returned by searches using various weight fac-
tors for the relationships defined in the proposed ontologies, users’ re-
views of both learning designs and learning objects, and ontology-
defined competencies. 
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UML. See Unified Modeling 
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GOOD OLD AI Ontology UML 

Profile, 160, 207, 267 
Ontology UML Profile, 119, 174, 
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UML profile for modeling Web 

applications, 122 
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MagicDraw, 230 
ontology modeling, 229 
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problems, 229 
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W3C, 79, 80 
Web Ontology Language. See OWL 
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XML Metadata Interchange, 34, 61, 

123, 124 
MOF XMI, 125, 258 
UML XMI, 124, 125, 229 

XML Schema, 81, 83, 89 
Xpetal, 165 
XSLT, 32 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




